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Predicting bond return predictability

Abstract

We document predictable shifts in bond return predictability related to economic

activity and uncertainty in the U.S. Treasury bond market using standard bond

excess return predictors. Bond returns are predictable in high (low) economic activity

(uncertainty) states, but not in others. We develop a new test for equal conditional

predictive ability among two or more forecasting methods and show that relative

performances are predictable and exploitable in a real-time forecasting setting. Using

a novel forecast combination scheme with dynamic trimming based on predicted

forecasting performance leads to strongly countercyclical out-of-sample risk premia

estimates and substantial gains in predictive accuracy and economic value.
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1. Introduction

We study time variation in bond return predictability and document predictable shifts

related to economic activity and uncertainty. Existing evidence on bond return predictabil-

ity has mostly been established using linear predictive regressions designed to assess

whether bond excess returns are predictable on average using time series that potentially

span many diverse states of nature.1 If predictability shifts over time, however, then an

unconditional approach may be misleading and yield unstable conclusions. The continued

discussion of the degree of predictability in U.S. Treasury bonds is indicative of such

instabilities. In-sample evidence frequently points to predictability by means of variables

such as yield spreads (Campbell and Shiller, 1991), forward spreads (Fama and Bliss, 1987),

linear combinations of forward rates (Cochrane and Piazzesi, 2005), and macroeconomic

variables (Cooper and Priestley, 2009, Ludvigson and Ng, 2009, Cieslak and Povala, 2015,

Eriksen, 2017), but out-of-sample exercises often fail to deliver consistent evidence of

predictability and statistical and economic evaluations often disagree.2 Della Corte, Sarno,

and Thornton (2008), Thornton and Valente (2012) and Sarno, Schneider, and Wagner

(2016), for instance, fail to find economic value of statistical bond predictability.

In this paper, we address this issue by developing a new method that is able to assess

conditional predictive ability among two or more forecasting methods using observable

state variables and identify methods anticipated to be informative of future relative forecast

performance.3 Our contributions are fourfold. First, we provide new empirical evidence

on predictable state-dependencies in bond return predictability. We document that bond

return predictability shifts over time for a set of predictors well-known to the literature.
1Early studies include Fama and Bliss (1987), Keim and Stambaugh (1986), Fama and French (1989),

and Campbell and Shiller (1991). More recent studies of bond return predictability includes Cochrane
and Piazzesi (2005), Cooper and Priestley (2009), Ludvigson and Ng (2009), Cieslak and Povala (2015),
Eriksen (2017), Ghysels, Horan, and Moench (2018), Berardi, Markovich, Plazzi, and Tamoni (2019),
Bianchi, Büchner, and Tamoni (2019), and Gargano, Pettenuzzo, and Timmermann (2019).

2Bauer and Hamilton (2018) even challenge in-sample predictability by pointing out that standard
regressions are subject to serious small-sample distortions when using overlapping returns. A related point
is made by Wei and Wright (2013).

3Being able to anticipate future relative forecast performance is also relevant viewed in the light of the
numerous studies that provide empirical evidence of model instabilities in predictive models. Prominent
examples include Pesaran, Pettenuzzo, and Timmermann (2006), Giacomini and Rossi (2009, 2010),
Pettenuzzo and Timmermann (2011), Rossi (2013), and Pettenuzzo and Timmermann (2017).
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In particular, we consider yield spreads, forward spreads, yield curve factors, forward

rates, and macroeconomic factors. We begin with a standard evaluation of out-of-sample

forecasts generated using a rolling window scheme and find that none of the predictors are

able to reliably outperform the expectations hypothesis (EH) when considering traditional

unconditional predictive ability tests. However, this does not exclude the possibility that

a given method works well in certain states of the world. To facilitate a conditional,

state-dependent view of bond return predictability, we therefore develop a new statistical

test for equal (un)conditional predictive ability among two or more forecasting methods.

The test is a multivariate generalization of the test presented in Giacomini and White

(2006) that enables us to identify forecasting methods anticipated to be informative of

future (relative) predictability.4 As such, our test is well-suited to study state-dependencies

and shifts in predictability as it is directly designed to compare two or more competing

forecast methods and reveal differences in relative conditional predictive ability that

would otherwise be hidden in standard unconditional tests of equal predictive ability. We

then employ our test to examine differences in conditional predictive abilities and find

overwhelming evidence favoring state-dependencies in bond return predictability.

Second, we document that these shifts are related to economic activity and uncertainty

measured using the Purchasing Manager’s Index (PMI) (see, e.g. Berge and Jordà (2011)

and Christiansen, Eriksen, and Møller (2014)) and the index (U) proposed in Jurado,

Ludvigson, and Ng (2015), respectively. We uncover a striking pattern in bond return

predictability across states related to these variables. More specifically, interpreting the

expectations hypothesis (EH) as a no-predictability benchmark, we find that bond risk

premia are predictable in high (low) economic activity (uncertainty) states. Conversely, the

EH implication of constant risk premia provides a reasonable approximation in low (high)

economic activity (uncertainty) states. Consistent with this, we find that out-of-sample R2s

(Campbell and Thompson, 2008) for individual predictors are mostly negative in low (high)

economic activity (uncertainty) states and positive in high (low) activity (uncertainty)
4The test further extends the (unconditional) multivariate Diebold-Mariano statistic (Diebold and

Mariano, 1995) proposed in Mariano and Preve (2012) by allowing for comparison of a mixture of nested
and non-nested models.
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states. In short, albeit several predictors fail to provide valuable information on average,

many outperform the EH conditional on the state of the world.

Third, we show that the predictable state-dependencies in bond return predictability

are exploitable for real-time forecasting purposes. In particular, we document sizable gains

in predictive accuracy when evaluated using both standard statistical criteria and when

measuring the economic value from the viewpoint of a mean-variance investor that trades

in the Treasury bond market. To facilitate this analysis, we device a simple and intuitive

dynamic ranking rule for identifying the set of forecasting methods with indistinguishable

conditional predictive ability in real-time. The dynamic ranking rule is inspired by the

Model Confidence Set (Hansen, Lunde, and Nason, 2011) (MCS) for ranking a set of

forecasting methods. A rejection of the null hypothesis of equal conditional predictive

ability implies that one or more methods display superior predictive ability in some or all

states. The rule enables us to predict relative forecasting performance using simple least

squares and, subsequently, to rank the methods according to their predictive performance.

If a single method is selected, then this method constitutes the forecast. If several methods

with equal conditional predictabive ability are identified, then we perform equal-weighted

forecast combination (Bates and Granger, 1969) among the selected methods. We refer

to this strategy as a dynamic forecast combination strategy. It is well established in this

literature that a simple equal-weighted combination forecast is hard to beat (Timmermann,

2006). Yet, as pointed out by Aiolfi, Capistrán, and Timmermann (2011), little attention

has been paid to determining the optimal set of models to combine given a potential

pool of candidate predictors. We argue that our dynamic forecast combination schemes

provides a simple and intuitive way to dynamically trim the candidate set of predictors

prior to combination.5 Our dynamic forecast combination strategy can thus be viewed as a

dynamic trimming strategy (as opposed to the static version considered in, among others,

Rapach et al. (2010)), where we only combine across forecasts from models anticipated to

display superior predictive ability in the current state.
5A large empirical literature documents gains from (statically) trimming forecasts prior to averaging.

Notable examples include Aiolfi and Favero (2005), Aiolfi and Timmermann (2006), Timmermann (2006),
Stock and Watson (2004), Rapach, Strauss, and Zhou (2010), Bjørnland, Gerdrup, Jore, Smith, and
Thorsrud (2012), and Genre, Kenny, Meyler, and Timmermann (2013).
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Fourth, we document that our dynamic forecast combination scheme generates out-of-

sample risk premia estimates that are strongly countercyclical and spikes in recessions. This

is important as nearly all individual predictors (except the Ludvigson and Ng (2009) macro

factor) generates procyclical risk premia estimates. The latter (former) is (in)consistent

with standard finance theory, where risk premia are expected to be high in bad times due

to heightened risk aversion (Campbell and Cochrane, 1999, Wachter, 2006, Joslin, Priebsch,

and Singleton, 2015, Cochrane, 2017). The equal-weighted combination schemes, on the

other hand, generates acyclical forecasts that display no relation to the real economy.

The fact that our dynamic forecast combination scheme delivers strongly countercyclical

out-of-sample risk premia forecasts that improve overall predictive accuracy and economic

value strongly supports our conclusion that our test is able to correctly identify and exploit

shifts in bond returns predictability.

In sum, we provide new empirical evidence of predictable state-dependencies in bond

return predictability that are linked to economic activity and uncertainty. We document

that these predictability shifts are exploitable in real-time and delivers sizable gains in

both predictive accuracy and economic value. The gains originate from our method’s

ability to correctly predict relative forecasting performance and that this leads to better

and economically meaningful out-of-sample bond risk premia estimates.

Related literature Our paper is related to two broad strands of literatures. First, there

is an extensive literature that studies the predictability of Treasury bond excess returns.

Most of the literature focuses on unconditional predictive ability relative to the EH. Yet,

a recent literature has started to document state-dependencies and differences in inference

between statistical and economic evaluations. Della Corte et al. (2008), Thornton and

Valente (2012) and Sarno et al. (2016) find that high statistical predictability does not

translate into economic gains for mean-variance investors in out-of-sample tests. Gargano

et al. (2019) reconcile the seemingly contradictory evidence on the statistical and economic

value of bond prediction models by incorporating stochastic volatility and time-varying

parameters into the predictive regression. They further find that bond return predictability

is significantly stronger in recessions than in expansions. Related in-sample evidence for
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time-varying predictive performance is found in Andreasen, Engsted, Møller, and Sander

(2018) and Andreasen, Jørgensen, and Meldrum (2019). Specifically, Andreasen et al.

(2018) find that bond risk premia are positively (negatively) related to yield spreads in

expansions (recessions) and Andreasen et al. (2019) argue that there is a significantly

stronger relation between yield spreads and bond risk premia during the zero lower bound

period. We contribute to this literature by uncovering novel evidence on predictable

time-variations in forecasting performance for a broad set of well known bond predictors.

We directly test for conditional predictive ability and documents that predictability itself

varies over time and that it is predictable and exploitable. We further contribute to

the understanding of bond market dynamics by demonstrating that relative performance

is closely related to economic activity and macroeconomic uncertainty and that bond

risk premia are predictable in times of high (low) economic activity (uncertainty) states,

whereas the EH provides a reasonable anchor in low (high) economic activity (uncertainty)

states. We also find that our out-of-sample forecasts are consistent with bond risk premia

being high in bad times and spiking in recessions (Campbell and Cochrane, 1999, Wachter,

2006).

Our paper further contributes to a large and active literature on forecasting and forecast

evaluations. First, we provide the first multivariate test for equal conditional predictability

ability. Our multivariate generalization of the Giacomini and White (2006) test provides

forecasters with the opportunity to test equal (un)conditional predictive ability among

many forecast methods without having to rely on multiple testing adjustments, which

would otherwise be appropriate if testing many models against each other on a pairwise

basis (Hubrich and West, 2010). Second, we facilitate easy testing of equal un(conditional)

predictive ability as all our proposed tests are simple Wald statistics with chi-squared

limited distribution as opposed to the non-standard and context-specific distribution

often found in the literature (Clark and McCracken, 2001, McCracken, 2007, Clark and

McCracken, 2012, Gonçalves, McCracken, and Perron, 2017).6 Third, and in contrast to
6Moreover, our tests are generally invariant to any reordering of the forecasting methods under

comparison, ensuring that conclusions drawn from a single test is unaltered by any permutation of the
ordering of the forecasting methods. This is important as it alleviates the need for incorporating multiple
testing adjustments.
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Hubrich and West (2010), Mariano and Preve (2012), and Clark and McCracken (2012),

the proposed tests are applicable to a mixture of both nested and non-nested models, hold

for a general loss function, and allow for non-stationarity in the data. Last, we allow for

comparison of a wider class of forecasting methods not considered in the application of this

paper, including linear, non-linear, Bayesian, and non-parametric methods, something that

is not allowed in the methods proposed in Clark and McCracken (2012), Granziera, Hubrich,

and Moon (2014), and Gonçalves et al. (2017) that apply to linear models only. We further

contribute to a literature that studies the impact of trimming forecasts prior to combination.

Makridakis and Winkler (1983) show that the marginal impact of including an additional

method decreases as the number of methods increases. Similarly, Jose and Winkler (2008)

document that trimming or winsorizing improve forecast accuracy and reduce the risk of

large errors. Samuels and Sekkel (2017) find that using the (unconditional) MCS as a

trimming device prior to constructing combined forecasts can greatly improve accuracy

and Diebold and Shin (2018) propose a LASSO-based procedure that sets some combining

weights to zero and shrinks the survivors toward equality. Our approach differs from theirs

by being rooted in a formal multivariate test of equal conditional predictive ability and

by focusing in predicted performance rather than past performance. For comparison, we

implement a version of the unconditional trimming rule (Samuels and Sekkel, 2017) and

find that our conditional trimming provides superior predictive ability. Finally, our work

is related to recent papers studying the predictability of relative forecast performance

(Timmermann and Zhu, 2017, Granziera and Sekhposyan, 2019).

The remainder of the paper proceeds as follows. Section 2 outlines our data and state

variables. Section 3 develops our multivariate statistical tests for equal (un)conditional

predictive ability and introduces our dynamic ranking rule. Section 4 present our main

empirical results on state-dependencies in bond return predictability and Section 5 examines

the sources of conditional predictability. Section 6 examines the link between our out-of-

sample risk premia estimates and the real economy. Section 7 examines the economic value

attainable for a mean-variance investor. Finally, Section 8 provides concluding remarks.
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2. Bond return predictability

This section discusses our setting and describes the construction of monthly bond excess

returns and provides summary statistics. We then outline the set of bond return predictors

used in our empirical analysis and their construction and, last, discuss the state variables

used to assess state-dependencies in bond excess return predictability.

2.1. Predictive regression for bond returns

To motivate our study, consider a classic predictive regression model for bond risk premia

of the form

rx
(k)
t+τ = α(k) + β(k)xt + ε

(k)
t+τ , (1)

where rx(k)
t+τ = p

(k−τ)
t+τ − p

(k)
t − p

(τ)
t denotes the τ -month log excess holding period return on

a k-month zero-coupon Treasury bond and p(k)
t is the time t log price of a bond with k

months to maturity. We are interested in determining whether a set of predictors xt can

predict bond excess returns, where a natural benchmark is the expectations hypothesis

that implies β(k) = 0 (i.e. no predictability). Our empirical analysis focuses on monthly

U.S. Treasury bond excess returns (τ = 1) over the period 1962 to 2018 constructed using

the Gürkaynak, Sack, and Wright (2007) dataset and a one-month Treasury bill obtained

from the Center for Research in Security Prices (CRSP) as in Gargano et al. (2019).7 The

use of a monthly holding period returns avoids the many issues with persistence induced

from using annual overlapping returns for conducting inference (Bauer and Hamilton,

2018) and may better facilitate the capture of short-lived dynamics in bond excess returns

across economic states (Farmer, Schmidt, and Timmermann, 2019, Gargano et al., 2019).

[Insert Figure 1 About Here]

Figure 1 plots time series of excess returns for bonds with two, three, four, and five

years to maturity, respectively. The same set of maturities are considered in, e.g., Fama

and Bliss (1987) and Gargano et al. (2019). Bond excess returns are notably more volatile
7We detail the construction of monthly log yields and bond prices in the Internet Appendix. The data

are available at https://www.federalreserve.gov/data/nominal-yield-curve.htm.
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during the early 1980s and more calm in the late 2010s. The magnitude of bond risk

premia also appears to narrow towards the end of our sample period.

[Insert Table 1 About Here]

Panel A of Table 1 presents descriptive statistics for our monthly bond excess return

series. We see that longer maturity bonds are more volatile and earn higher excess returns

on average. The Sharpe ratios are generally high and range between 0.46 for the two-year

bond and 0.35 for the five-year bond. Morover, short-term bonds display higher skewness,

kurtosis, and have slightly more persistent excess returns. However, the persistence

in these monthly bond excess return series are substantially lower compared to those

typically observed in studies using annual overlapping bond excess returns (e.g. Cochrane

and Piazzesi (2005) and Ludvigson and Ng (2009)) and the first-order autocorrelation

coefficient never exceeds 0.17 across the maturity spectrum. Panel B of Table 1 provides

contemporaneous bond excess return correlation across maturities and confirms the well

known observation that bond excess returns are highly cross-sectionally correlated across

maturities. Correlation coefficients range from 0.99 to 0.93, where bonds closest to each

other in the maturity spectrum obtain the highest contemporaneous correlations.

2.2. Predictor variables

We consider a set of standard bond predictors from the extant literature. In particular,

we consider yield spreads (Campbell and Shiller, 1991), forward spreads (Fama and Bliss,

1987), principal components of yields (Litterman and Scheinkman, 1991), forward rates

(Cochrane and Piazzesi, 2005), and macroeconomic factors (Ludvigson and Ng, 2009).

In particular, the Campbell-Shiller (CS) yield spreads are computed as

ys
(k)
t = y

(k)
t − y

(1)
t , (2)

where y(k)
t denotes the time t log yield on a bond with k periods to maturity and y

(1)
t

denotes the safe one-period return measured using the implied yield on a one-month

Treasury bill obtained from CRSP. The Fama-Bliss (FB) forward spreads are computed
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similarly as

fs
(k)
t = f

(k)
t − y

(1)
t , (3)

where f (k)
t denotes the forward rate for loans between t+ k − 1 and t+ k. The principal

component (PC) of yields are computed from the set of 12-, 24-, 36-, 48-, and 60-month

maturity yields and we focus on the first three components often referred to as level, slope,

and curvature. These components account for almost all of the variation in yields. The

Cochrane-Piazzesi (CP) single factor is formed from a linear combination of forward rates

using the projection

rxt+1 = δ + γ1f
(12)
t + γ2f

(24)
t + γ3f

(36)
t + γ4f

(48)
t + γ5f

(60)
t + εt+1, (4)

where rxt+1 = 1
4
∑5
i=2 rx

(i×12)
t+1 can be viewed as the excess return on a portfolio of Treasury

bonds with different maturities. The CP factor is then obtained as CPt = δ̂ + γ̂ft, with

γ̂ = (γ̂1, γ̂2, γ̂3, γ̂4, γ̂5) and f t = (f (12)
t , f

(24)
t , f

(36)
t , f

(48)
t , f

(60)
t )′. Last, the Ludvigson-Ng

(LN) factor is based on a T ×M panel of macroeconomic variables, x, that we assume can

be adequately described by a static factor model, i.e.

xi,t = κigt + νi,t,, (5)

where gt is an s×1 vector of common factors with s�M that we estimate using principal

component analysis. We use the dataset from McCracken and Ng (2016). Following

Ludvigson and Ng (2009), we build a single factor as a linear combination of a subset of

the principal components. We determine the subset using the BIC and obtain the factor

from a projection of rxt+1 onto the set of selected macroeconomic factors.

[Insert Table 2 About Here]

Table 2 presents descriptive statistics for the set of predictors (Panel A) along with

contemporaneous correlations (Panel B). All variables are constructed using the full range

of available observations here, but are constructed recursively in the out-of-sample exercise.

Yield spreads and forward spreads are fairly persistent with first-order autocorrelations
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between 0.82 and 0.92 and are heavily cross-correlated. Unsurprisingly, PC2 — the slope

component of the yield curve — is strongly related to both yield and forward spreads. CP

and LN are similarly positively correlated with the spread variables and also positively

correlated with each other. Last, we note that CP and LN are relatively less persistent

compared to the remaining variables.

2.3. State variables

Conventional tests of equal predictive ability gauge if forecasts are equally accurate on

average, not if and when predictors exhibit predictive ability. We are interested in this

latter question and below we develop a new test to address this question in a multivariate

setting. The basic premise of the test rests on the intuition that even if a given predictor

does not display unconditional predictive ability, it may display superior predictive ability

conditional on some states of the world. To identify these states, we need to identity state

variables that are likely to capture fluctuations in forecast losses. We consider two state

variables well-known for their ability to capture salient features of the state and properties

of the business cycle. We use the Purchasing Managers’ Index (PMI) published by the

Institute of Supply Management and the macroeconomic uncertainty index (U) proposed

in Jurado et al. (2015).

2.3.1. Purchasing managers’ index The PMI is an index constructed from a survey of the

manufacturing sector that ranges from 0 to 100 and is released on the first business day of

every month. The index is specifically designed to capture the state of the economy with

values below 50 indicating a recession in the manufacturing economy and is regarded as a

prime leading indicator of the business cycle (Berge and Jordà, 2011, Christiansen et al.,

2014). Using a variable that tracks business cycle fluctuations to assess state-dependencies

in bond predictability is motivated by a recent literature that documents stark differences

in predictive performance for asset returns across different phases of the business cycle

(Henkel, Martin, and Nardari, 2011, Dangl and Halling, 2012, Andreasen et al., 2018,

Eriksen, 2017, Gargano et al., 2019, Farmer et al., 2019).

10



2.3.2. Macroeconomic uncertainty U measures a common component in the time-varying

volatilities of h-step ahead forecast errors across a large number of macroeconomic series

that include categories such as real activity, prices, and financial assets.8 The index is

therefore associated with the variance of the unpredictable components of macroeconomic

variables.9 Macroeconomic uncertainty has recently been identified as an important

contributor to business cycle fluctuations (Bloom, 2009, Ludvigson, Ma, and Ng, 2019)

and asset prices (Drechsler, 2013, Bali, Brown, and Tang, 2017, Borup and Schütte, 2019).

Moreover, it has recently been been used to study state-dependent performance of affine

term structure models (Sarno et al., 2016). Last, uncertainty is likely to be linked to risk

aversion (Bekaert, Engstrom, and Xu, 2019), which bears direct influence on the required

compensation for bearing interest rate risk.

[Insert Figure 2 About Here]

Figure 2 displays the evolution of the two state variables over time. Green (yellow)

shaded ares represent periods of (high) low activity and uncertainty, respectively, where

high (low) episodes are identified using the 80% (20%) quantiles of their time series. PMI

and U are both persistent series with first-order autoregressive coefficients of 0.94 and

0.99, respectively. PMI (U) mostly takes on (low) high values in bad times and the two

series realize a full sample correlation of −0.48, suggesting that the series are related, but

not perfect substitutes. For our purpose, we remain agnostic about the lead-lag relation

between uncertainty and the macroeconomy, but note that Ludvigson et al. (2019) provide

evidence that higher macroeconomic uncertainty in recessions arises as an endogenous

response to output shocks (see also Andreasen (2019)).
8We focus on the index associated with h = 1 step ahead forecast errors to match the holding period

of the bond as well as the data frequency in general.
9An alternative is the macroeconomic uncertainty index proposed in Rossi and Sekhposyan (2015),

although its quarterly frequency puts it at a disadvantage compared to the monthly frequency of the
Jurado et al. (2015) index.

11



3. Multivariate tests for equal predictive ability

This section introduces our econometric methodology. We develop a multivariate test for

equal conditional predictive ability, present our main forecasting methods and hypotheses,

and discuss applications within dynamic forecast selection and combination.

3.1. Notation

To introduce a general notation, let wt ≡ (yt,xt)′ be an observed vector defined on the

probability space (Ω,F,P), where yt is the target object of interest and xt is a vector

of predictors. We consider a setting where p + 1, p ≥ 1, methods are available for

forecasting τ periods into the future. We denote the forecast of yt+τ originating a time t

by f̂ it+τ = f i
(
wt,wt−1, . . . ,wt−mi+1; θ̂it,mi

)
for i = 1, . . . , p+ 1, where f i is a measurable

forecast function. θ̂it,mi denotes the parameter estimates used to construct the forecast for

the ith forecasting methods obtained using observations from the mi most recent periods

in the past. For ease of exposition and along the lines of Giacomini and White (2006),

we define m = max {m1, . . . ,mp+1} and require that m < ∞. This excludes expanding

window forecast schemes from our test, but allows for rolling window estimators. The

number of out-of-sample forecasts is T = N − (m+ τ − 1) with a total sample size of N

(time series) observations. In order to assess the forecasting ability of each forecasting

method, we use a real-valued loss function Lt+τ
(
Yt+τ , f̂

i
t+τ

)
. Important examples of L

include economic measures such as utility or profits (Granger and Machina, 2006) and

statistical measures such as the square or absolute value of the forecast errors (West, 2006),

where forecast errors are given by eit+τ = f̂ it+τ − yt+τ . To ease the notational burden, we

suppress the arguments of L and write the ith loss function as Lit+τ for the remainder the

of the paper.

3.2. Rolling window forecasts

Our out-of-sample analysis is based on conventional predictive regression models of the form

presented in (1), which is arguably the most common methodology on forecasting bond risk
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premia (see, e.g., Gargano et al. (2019)). We note, however, that our econometric framework

is not limited to such regressions, but naturally extends to a broad array of parametric,

non-parametric, and Bayesian methods. We consider a set of p methods, indexed by i,

defined by the set of predictors outlined in Section 2.2 in addition to the natural EH

benchmark. The predictive regression models will be estimated by a rolling window

OLS scheme, in accordance with our and Giacomini and White (2006) assumptions, and

forecasts generated at time t according to (suppressing maturity-dependence for notational

simplicity)

f̂ it+τ = α̂it + β̂itxit, (6)

for i = 1, . . . , p+ 1 with θ̂it,mi =
(
α̂it, β̂

i

t

)′
. The benchmark EH forecast naturally includes

no predictors and is simply defined as f̂ it+τ = α̂it, which is consistent with a no-predictability

interpretation as implied by financial theory.

3.3. The hypothesis of equal conditional predictive ability

We are interested in formally evaluating whether a set of p+ 1 forecasting methods display

equal conditional predictive ability using some σ-field (information set), Gt. That is, we

want to test the hypothesis that

H0: E
[
Lit+τ |Gt

]
= E

[
Li+1
t+τ |Gt

]
, i = 1, . . . , p, (7)

or equivalently that

H0: E [∆Lt+τ |Gt] = 0, (8)

where ∆Lt+τ =
(
∆L1

t+τ , . . . ,∆L
p
t+τ

)′
and ∆Ljt+τ = Ljt+τ − Lj+1

t+τ for j = 1, . . . , p and

where Lit+τ is the loss function for the ith method. This null hypothesis offers three main

advantages. First, it allows us to study conditional predictive abilities and identify if

and when there are differences in the competing models’ conditional predictive accuracy.
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This is distinctly different from testing whether methods have equal predictive accuracy

on average. Indeed, a given forecasting method can display superior predictive ability in

certain states of the world as captured by Gt, yet still perform poorly on average. In other

words, the null hypothesis implies that Gt is uninformative about the relative predictive

accuracy of one or more forecasting methods when forecasting the object of interest τ

periods into the future. A rejection of the null hypothesis, conversely, implies that relative

predictive accuracy is predictable by Gt and that this may be exploited to improve forecasts.

Second, if Gt is set to the trivial σ-field, Gt = {∅,Ω}, then the null hypothesis becomes

unconditional and, as such, comparable to the one considered in Mariano and Preve

(2012). In this case, the hypothesis test provides information about the average predictive

ability of the forecasting methods as in Diebold and Mariano (1995) and West (1996).

Third, the loss functions depend explicitly on the parameter estimates and not on their

probability limits, leading to a test statistic that takes into account estimation uncertainty.

Importantly, by allowing for asymptotically non-vanishing estimation uncertainty, the test

can accommodate the empirically relevant case of inclusion of nested models in the set

of forecasting methods which is a feature that the (unconditional) multivariate test in

Mariano and Preve (2012) cannot handle.10 This is particularly important in our context

as the EH model is nested within every competing forecasting model coming from (1).

3.4. The multivariate test statistic

The null hypothesis in (8) is equivalent to stating that

H0: E
[
h̃t∆Lt+τ

]
= 0 (9)

for all Gt-measurable functions h̃t. We restrict attention to a subset of these functions that

we gather in the q-dimensional vector ht =
(
h̃

(1)
t , . . . , h̃

(q)
t

)′
. We refer to this vector as the

state function. For this choice of state function, we can reformulate the multivariate null
10Technically, with Gt = {∅, Ω} and asymptotically vanishing estimation uncertainty the standard

errors of differences in forecast performance between a set of nested models will equal zero, leading to
non-standard limiting distributions of the test statistics.
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hypothesis of equal conditional predictive ability as follows

H0,h: E [ht ⊗∆Lt+τ ] = 0, (10)

where the subscript h indicates the dependence on the state function and ⊗ denotes the

Kronecker product. The specification in (10) is a natural multivariate extension of the null

hypothesis in Giacomini and White (2006). Indeed, we obtain their econometric framework

as a special case when p = 1.

Our empirical analysis focuses on one-step ahead forecasting, τ = 1, as is common in

the bond return predictability literature and we consider an information set Gt, Ft ⊆ Gt,

containing the state variables discussed in Section 2.3. We view this setting our leading

example, but provide theoretical results for multi-step ahead forecasting, i.e. τ > 1, in the

Internet Appendix along with our assumptions that are identical to those of Giacomini and

White (2006). Finally, let dt+1 = ht ⊗∆Lt+1. We then consider the following quadratic

statistic

Sh = T d̄
′Σ̂
−1
T d̄, (11)

where d̄ ≡ T−1∑T
t=1 dt+1, and Σ̂T ≡ T−1∑T

t=1 dt+1d
′
t+1 is a (qp× qp) sample covariance

matrix that consistently estimates the variance of dt+1.11 That is, Sh is a natural Wald

statistic constructed for testing whether d̄ is a zero vector. When formulating an alternative

hypothesis, one must take into account the generality that data is allowed to exhibit non-

stationarity. We provide a discussion in the Internet Appendix. For some c > 0, we

formulate the alternative in line with Giacomini and White (2006) as

HA,h: E
[
d̄
′]E [d̄] ≥ c, (12)

for all T sufficiently large. Under stationarity, the null and alternative hypothesis are
11We note that for large values of q and/or p, the dimension of ΣT and d̄ may become large, potentially

leading to issues with statistical inferences in finite samples. We propose remedies in Borup and Thyrsgaard
(2017), but note that our empirical analysis use single instruments together with p = 6, leading to reasonable
dimensions.
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exhaustive. Under non-stationarity, this may not necessarily be the case. If an important Gt-

measurable variable is omitted from the state function, it may happen that E
[
d̄
′]E [d̄] = 0

for a particular sample size due to, for instance, shifting means without the null hypothesis

being true. As an example, one could easily imagine a situation where one method

outperforms (some of) the other methods in certain states, while it performs worse than

the same methods in other states. Therefore, the test has little power against alternatives

where the loss differentials are correlated with Gt-measurable random variables not included

in the state function. While this concern is important, it also highlights the flexibility of

the test statistic. As mentioned above, the econometrician chooses the state function to

include state variables relevant for disentangling the forecasting abilities of two or more

forecasting methods. The test therefore only provides power in situations when this is

possible. As a result, the test statistic changes with the choice of state function and the

subscript in Sh in (11) emphasizes this.

The asymptotic properties of the test statistic are summarized in Theorem 1 and the

proof can be found in the Internet Appendix.

Theorem 1 (One-step multivariate conditional predictive ability test). Sup-

pose Giacomini and White (2006) type assumptions hold (Assumptions 1-3 in the Internet

Appendix). Then the test statistic has the following properties.

A. Asymptotic distribution under the null. For forecast horizon τ = 1, state

function sequence {ht}, m <∞, and under H0 in (8),

Sh
d−→ χ2 (qp) , as T →∞. (13)

B. Consistency under the alternative. For any c ∈ R+ and under HA,h in (12),

P [Sh > c]→ 1, as T →∞. (14)

C. Permutation invariance. Let L∗t+1 be an arbitrary permutation of the forecast
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losses, and define ∆L∗t+1 = DL∗t+1, where

D =



1 −1 0 . . . 0

0 1 −1 . . . ...
... . . . . . . . . . 0

0 . . . 0 1 −1


(15)

is a p × (p+ 1) matrix. Let d̄∗ = T−1∑T
t=1 d

∗
t+1 with d∗t+1 = ht ⊗ ∆L∗t+1 and Σ̂

∗
T ≡

1
T

∑T
t=1 d

∗
t+1d

∗′
t+1. Then,

S∗h ≡ T d̄
∗′
m

(
Σ̂
∗
T

)−1
d̄
∗
m = Sh, ∀T. (16)

We provide a corresponding result for the unconditional, possibly multi-step, case, in

the Internet Appendix. This case, where we compare the average performance of the

methods over the out-of-sample window, is obtained by setting ht = 1 for all t. The

limiting distribution is χ2 (p) for a test statistic that employs a HAC type covariance

matrix estimator. In the case of the conditional test and multi-step forecast horizons an

identical χ2 (qp) limiting distribution is obtained when using an appropriate HAC type

covariance matrix estimator to capture arising serial dependence.12

Although any reordering of the forecasting methods alters the dynamics of dt+1,

Theorem 1.C. shows that we obtain the same value of the test statistics and the same

limiting distribution under the null hypothesis for each permutation (reordering) of the

forecasting methods, irregardless of the null being true or not. This is important as it

allows the researcher to perform just a single test.

3.5. Understanding the test

To provide an intuitive understanding of our test statistics, we consider the simplest case

of p = 1, where the problem reduces to a comparison between a single forecasting method
12Borup and Thyrsgaard (2017) provide Monte Carlo evidence for all test statistics. They show that all

tests display good size and power properties in dimensions similar to the ones considered in this paper.
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and a benchmark. An unconditional test is equivalent to the regression

∆Lt+1 = ϕ0 + ηt+1, (17)

where the null hypothesis that ϕ0 = 0 can be testing using a standard t-test using

an appropriate HAC type of covariance estimator. The conditional test augments the

regression with a set of state variables. Our empirical study considers a single state variable

(plus a constant) at a time to facilitate economic interpretation. Suppose, accordingly,

that we have a single state variable h̃t, then the conditional test amounts to running the

extended regression

∆Lt+1 = ϕht + ηt+1 = ϕ0 + ϕ1h̃t + ηt+1, (18)

with ϕ = (ϕ0, ϕ1) and ht =
(
1, h̃t

)′
being the state function.13 In this case, we are

interested in testing jointly ϕ0 = 0 and ϕ1 = 0 using a Wald test and an appropriate

estimator of the covariance matrix. The limiting distribution under the null hypothesis is

equivalent to the ones provided in Theorem 1. From (18), it is clear that a rejection of

ϕ1 = 0 indicates that there is information in the state variable that informs about future

relative predictability of the models under consideration. That is, there is evidence of

state-dependency. Importantly, the expression in (18) is nothing more than a full sample

predictive regression similar in spirit to (1) estimated over the out-of-sample window. The

key difference being that (18) predicts the future relative predictive ability among the

candidate forecasting methods using state variables whose values are observable at the

construction of the forecast and are picked by the researcher. We refer to them as state

regressions in the following. These ideas naturally extend to our case of p > 1, resembling

a seemingly unrelated regression (SUR) type of interpretation of our test statistic. We will

make use of this insight below when formulating a simple decision rule to exploit rejections

of the null hypothesis to dynamically select or combine among forecasting methods with

indistinguishable predicted performance.
13If one uses several state variables in addition to the constant, this amounts to a multiple regression

and joint inference on all parameters.
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3.6. Ranking of forecasting methods

Rejection of the null hypothesis suggests that one or more of the forecasting methods exhibit

superior predictive ability in certain states. However, it provides no guidance towards

which method(s) that causes the rejection and display(s) the strongest predictability.

The identification of the method(s) is of both economic and practical interest. Central

banks, international organizations (IMF, OECD, and the World Bank), and professional

forecasters (SPF and Blue Chip) frequently generate forecasts that are widely followed

by market participants and policy makers. Designing routines that can identify forecasts

and/or forecasters that are predicted to do well in a given state of the world therefore

seems worthwhile. To that end, we propose a simple and intuitive algorithm that ranks

forecasting methods based on their predicted performance with respect to one or more

state variables and identifies the set of best methods. This set may consists of a single

model, all models, or any number of models in between. It depends on the ability of

the state function to accurately inform us about any, possible time-varying, differences

in predictive accuracy. This procedure reveals potential fluctuations in predictive ability

over time, similar in spirit to the fluctuation test of Giacomini and Rossi (2010), but also

suggests why these fluctuation occurs due to the use of state variables. The procedure can

also be applied dynamically, at the forecast origin date, to select forecast methods that is

expected (conditional on Gt) to yield the lowest loss at a future time point and to conduct

conditional combination techniques. In formulating the algorithm, we consider a MCS-type

procedure (Hansen et al., 2011) to eliminate methods according to an elimination rule and

rank forecasting methods into a best set whose elements have equal predicted conditional

predictive ability.

3.6.1. Full out-of-sample ranking rule We first device a statistical algorithm for ranking all

forecasting methods based on their predictive accuracy conditional on the state variable(s)

over the fill sample. In line with our empirical analysis below, we will formulate the

rule using a single state variable in addition to the constant, but note that it can be

extended directly to a setting with several state variables. Since h̃t may be continuous,
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we assume that it can be classified into a finite set of A discrete, non-empty, states sa,

a = 1, . . . ,A. For example, the state variable can be a measure of economic growth, which

may be classified into recessionary or expansionary states, or a measure of macroeconomic

uncertainty, which may be classified into low, medium, and high uncertainty states.

Let M0 be the set of the p+ 1 forecasting methods under consideration and M∗
a a set

of best forecasting methods in terms of some loss function within the ath state. We then

consider the following three-step procedure.

Step 0: Set Ma = M0 for a = 1, . . . ,A. Estimate by OLS the regression model

∆Ljt+1 = ϕjht + ηt+1 (19)

for all pairwise combinations of forecasting methods, j = 1, . . . , p× (p+ 1) /2. The

conditional expectation of the loss differentials within each state, E
[
∆Ljt+τ |s = sa

]
=

ϕj0 + ϕj1E
[
h̃t|s = sa

]
, a = 1, . . . ,A, is approximated by ϕ̂j0 + ϕ̂j1µ̂

a
h̃
, where µ̂a

h̃
is the

sample average of the state variable h̃t in state sa. Based on those estimated

conditional means, rank all p+ 1 methods (using a normalization of one method)

in all states. The forecasting method with lowest predicted loss across all pairwise

combinations is ranked first and similarly the method with highest predicted value

is ranked at last.

Step 1: Run the multivariate test for equal conditional predictive ability.

Step 2: If the test is not rejected, set M∗
a = Ma. Otherwise, eliminate the lowest

ranked forecasting method from Ma based on the ranking that associates with state

a. Iterate Steps 1–2 until the null is no longer rejected for all A states.

Concluding the algorithm leads to a set M∗
a for each state sa that contains the best

forecasting methods statistically indistinguishable in terms of predictive ability. A few

remarks are worthwhile here. First, the ranking rule exploits the state regression in-

terpretation of our test statistic and is, as such, strongly rooted in econometric theory.

Second, since the elimination of models is based on state-specific ranking, it will capture
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the state-dependency of predictability over the full out-of-sample period which proves

insightful in the empirical analysis below. Third, since the algorithm provides sets of equal

predictive ability within each state it can be thought of as a version of a conditional MCS

algorithm. Last, since the test is permutation invariant as per Theorem 1, we only need to

run it once for each time Step 2 is conducted, even though the elimination of models alters

the ordering of models. However, the ranking of all models in Step 0 is not permutation

invariant and requires, as such, an examination of all combinations. Fortunately, this step

is only conducted once and has little computational demands being based on least squares.

3.6.2. Dynamic ranking rule The above full out-of-sample ranking rule is not applicable

for real-time forecasting as Step 0 depends on a regression over all out-of-sample periods.

We therefore formulate a dynamic rule that enables researches to select and/or combine

among methods conditional on the realization of the state variable at the time of the

forecast. To that end, we divide the out-of-sample window into two parts. The first part is

used for initially estimating the state regression and the second part for forecast selection

and/or combination. Suppose that the first part has length T1 and that the second part has

length T2 with T1 + T2 = T . We then propose the following three-step ranking algorithm

at each time point t = m+ T1, . . . , N − 1.

Step 0: Set Mt = M0. Estimate by OLS the regression model

∆Ljt+1 = ϕjht + ηt+1 (20)

over a rolling window of length T1 for all pairwise combinations of forecasting

methods, j = 1, . . . , p × (p+ 1) /2. The conditional expectation E
[
∆Ljt+1|Gt

]
is

estimated by ϕ̂jht = ϕ̂j0 + ϕ̂j1h̃t which measures the time t prediction of the future

j’th loss differential using current information in the state variable. Based on those

predictions, rank all p + 1 methods (using a normalization of one method). The

forecasting method with lowest predicted loss across all pairwise combinations is

ranked first and similarly the method with highest predicted value is ranked at last.
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Step 1: Run the multivariate test for equal conditional predictive ability.

Step 2: If the test is not rejected, set M∗
t = Mt. Otherwise, eliminate the lowest

ranked forecasting method from M based on the ranking of predicted forecast losses.

Iterate Steps 1–2 until the null is no longer rejected.

This algorithm is a real-time version of the full out-of-sample version above that allocates

forecasting models at each time point t = m+ T1, . . . , N − 1 into a set of the best models,

M∗
t , with lowest expected forecast losses, using the current information in the state

variable.14 Since this ranking is conducted at the same time forecasts are generated, it

provides valuable information about the usefulness of a given set of models to base current

predictions upon.

3.7. Forecast combination

We then formulate a simple and natural procedure for exploiting this ranking of predicted

performances at each time t. Let f̂ ∗t+1 denote a combination forecast given by

f̂ ∗t+1 = 1
#M∗

t

∑
i∈M∗t

f̂ it+1, (21)

where #M∗
t denotes the cardinality of (number of elements in) M∗

t . If M∗
t consists of

a single forecasting method, then we rely on that single method for forecasting. If M∗
t

consists of more than one method, we perform forecast combination within the set of best

models. To keep focus on the ability of our method to identify the best set of models, we

consider the simplest possible combination scheme: equal-weighting.15 The equal-weighted

combination scheme has a long tradition in the forecasting literature and is empirically

hard to beat as it involves no estimation error in weights (Timmermann, 2006, Rapach

et al., 2010). Other combination schemes are naturally possible, e.g. using estimated

least squares weights, possibly with shrinkage to equal weights (Bates and Granger, 1969,
14Note also that it does not require a categorization of the state variable into discrete states.
15While one could possibly increase forecast performance further by considering more complicated

combination schemes, this is not the aim of our paper. Instead, we focus on the ability of our method
to discriminate between forecasting methods that are predicted to perform well and those predicted to
perform poorly and show that this does indeed lead to significant improvements.
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Granger and Ramanathan, 1984, Zellner, 1986, Diebold and Pauly, 1987). Our proposed

combination scheme is essentially an equal-weighting principle, but with the modification

that we dynamically trim the set of models prior to combination, where the trimming

is based on the predicted losses from our dynamic ranking rule. In the case of only two

models, p = 1, this reduces to the switching rule provided in Giacomini and White (2006).

Timmermann and Zhu (2017) formally show that forecast improvements are guaranteed

when state variables are powerful and Granziera and Sekhposyan (2019) provide empirical

evidence.

3.8. A check of size and power properties

To check the finite sample properties of our tests, we perform a Monte Carlo study. We

focus on their size and power properties in settings corresponding to its application in

both a full out-of-sample analysis and when used in the dynamic ranking rule.

We examine a situation where the forecasts have equal predictive ability unconditionally,

but conditional on some state variable h̃t at least one of the forecasts are more (or less)

accurate than the others. The data-generating process is set to

∆Lt+1 = µ(h̃t − %) + εt+1, (22)

where P[h̃t = 1] = % and P[h̃t = 0] = 1− %. To allow for the presence of estimation error

(approximately) asymptotically, as delineated by our theoretical setting, we re-sample

with replacement from de-meaned loss differentials from our empirical analysis when

generating εt+1. In this way they maintain every influence of the estimation coming the

forecasting models as well as ensure simulated time series that exhibit realistic empirical

behavior. Note also that E[∆Lt+1] = 0, together with E[∆Lt+1|h̃t = 1] = µ(1− %) and

E[∆Lt+1|h̃t = 0] = −µ%. That is, the unconditional null hypothesis is true, whilst the

conditional one is not necessarily so, depending on the value of (the elements in) µ and %.

We consider three sample sizes; a short, medium, and long length. The medium size

equals the length of our full out-of-sample window, T = 348, the short size equals the

sample length used in the dynamic ranking rule in the application, T1 = 120, and the long
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size is set to 1, 000 observations. Consistent with our empirical analysis, we set p = 5 as the

number of models under comparison less one due to the computation of loss differentials.

Since our ranking rules eliminate a model sequentially until it no longer rejects, we consider

the full range p = 1, . . . , 5. When p < 5, we randomly sample without replacement (in any

random order) among our full set of models and subsequently reconstruct loss differentials

based on the selected models. Note that any reshuffling of the order of models has no

influence on the test statistic due to its permutation invariance, presented in Theorem

1, such that it has no influence on the performance of the test statistic within a fixed

p. To obtain (samples of) εt+1, we consider two separate cases, using the empirical loss

differentials resulting from forecasting each of the 2-year and 5-year bonds, respectively.

We set % = 0.4, since this links to our findings below that documents notable superior

predictability of at least one model in each of the high and low economic activity or

uncertainty states, and less differences in predictive accuracy within the normal state. We

use 10,000 Monte Carlo replications.

3.8.1. Size properties To examine the size properties of our test, we set µ = 0 such

that both the unconditional and conditional null hypothesis are true. We consider two

implementations of the test. The first is unconditional and uses ht = 1 for all t, whereas a

conditional implementation uses ht = (1, h̃t)′. The results are reported in Table 3 for a

significance level of 5%. Conclusions are identical using a 1% and 10% significance level,

and relevant tables are available upon request.

It is clear that both the conditional and unconditional tests are well-sized, showing

negligible deviations from the nominal significance level. Those minor deviations generally

decrease in sample size and increase in number of models under comparison. It is comforting

to note that the tests maintain good size properties for the short sample size used in the

dynamic ranking rule. There is no notable difference when sampling from loss differentials

associated with the 2-year or 5-year bonds, except from in the short sample case where

the 5-year bond loss differentials lead to a slight undersizing.
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3.8.2. Power properties To examine the power properties of our test, we let the first

element of µ deviate from zero, and set the remaining elements equal to zero in a similar

style to Mariano and Preve (2012). Denote this first element by µ1. The deviation is

anchored in the empirical loss differentials, making it realistic in the context of the present

paper. Specifically, we compute the average absolute loss differentials across all models

within the low and high activity states defined in the empirical section below, denoting

it by η̂. We then set µ1 = cη̂ where c ∈ [0, 2.5].16 Given the specification in (22) and

% = 0.4, this allows µ1 to deviate at most 1.5 times the empirical value of average absolute

loss differentials. We have also implemented a version that lets all elements of µ deviate

from zero with a fraction c of each respective element’s average absolute loss differentials

within the low and high activity states. The power is uniformly stronger in this case, and

results are available upon request. Note also that, in both versions, the unconditional

null hypothesis remains true. We therefore set ht = (1, h̃t)′ and examine the power of the

conditional version of our equal predictability test. The power curves for a 5% significance

level are depicted in Figure 3. Conclusions are identical using a 1% and 10% significance

level, and the results are available upon request.

In line with the theoretical power result in Theorem 1, the test is consistent under

the (local) alternative considered, as power increases to unity for stronger deviations

from the null. It correctly exhibits empirical rejections equal to the nominal size at

c = 0. Power is stronger for less model comparisons, as expected, but the difference is

not substantial. As was the case for the size properties, it is comforting that the test

exhibits good power properties even for the relatively short sample length. To put this

into context, for c = 1/% = 1.67 we recover the empirical value of the mean absolute values

of loss differentials obtained in the empirical analysis when using (22). In this case, the

power exceeds 0.94 for the smallest sample size and p = 5, showing very desirable power

properties. There is no notable difference when sampling from loss differentials associated

with the 2-year or 5-year bonds.
16We also ran the simulation using U as state variable, yielding similar conclusions, yet somewhat

stronger power.

25



4. State-dependencies in bond return predictability

This section discovers novel evidence on predictable state-dependencies in bond excess

return predictability. We first compute standard out-of-sample forecasts using a rolling

window and then conduct full sample tests for equal (un)conditional predictive ability

among a standard set of bond predictors using state variables capturing economic activity

and uncertainty. Last, we document substantial gains in forecast accuracy from using

a simple dynamic decision rule that exploits predictable differences in relative forecast

performance.

4.1. Out-of-sample predictability

We begin our empirical analysis by gauging the unconditional predictive ability of our

predictors individually using a rolling window estimation scheme in which predictors and

parameters are estimated recursively using information available at time t only. We use

the period January 1962 to December 1989 as our initial estimation period, the period

from January 1990 to December 1999 as initial our testing period, and the period from

January 2000 to December 2018 as our evaluation period. We focus on U.S. Treasury

bonds with k = {24, 36, 48, 60} months to maturity and consider models based on the

predictor variables outlined in Section 2.2.17 To evaluate the out-of-sample performance of

the predictive methods relative to the constant expected return benchmark implied by the

EH, we compute the out-of-sample R2 statistic proposed in Fama and French (1989) and

Campbell and Thompson (2008)

R2
OS,i,k = 1−

∑N
t=R+1

(
rx

(k)
t − r̂x

(k)
t,i

)2

∑N
t=R+1

(
rx

(k)
t − r̂x

(k)
t,EH

)2 , (23)

where r̂x(k)
t+1,i and r̂x

(k)
t+1,EH denote the forecast from the ith predictor model and the

EH benchmark, respectively, R = m + T1 denotes the end of the testing period, and N

denotes the total number of observations. The R2
OS statistic in (23) is thus equivalent to

17Our choice of k is motivated by previous research that similar focuses on these maturities, e.g. Fama
and Bliss (1987), Cochrane and Piazzesi (2005), Ludvigson and Ng (2009), and Gargano et al. (2019).
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one minus the ratio of mean squared prediction errors, i.e. R2
OS,i,k = 1 − MSPE

(k)
i

MSPE
(k)
EH

. An

R2
OS > 0 implies that the MSPE of the ith predictor model is lower than that of the EH

benchmark model, indicating higher predictive accuracy. We interpret the EH model as

a no-predictability benchmark and test the null of no predictability
(
R2
OS ≤ 0

)
against

the one-sided alternative of predictability by the ith predictor model
(
R2
OS > 0

)
using the

Diebold and Mariano (1995) (DM) test for equal predictive ability.18

[Insert Table 4 About Here]

Table 4 reports R2
OS values and DM p-values for our predictor models across the

maturity spectrum. The key observation from this table is that no individual model is

able to convincingly outperform the EH benchmark unconditionally for all maturities.

Most models deliver negative R2
OS values and those that are positive are far from being

significant at any of the conventional levels.19 These results are in line with Gargano et al.

(2019), who similarly find few positive R2
OS values for linear predictive models. Like us,

they find forward spreads to consistently be among the best predictor of monthly bond

excess returns for short maturities and LN the best for longer maturities. However, we

find poorer performance for CP using rolling window regressions, indicating that bond

return predictability is sensitive to the forecasting setup.20 Last, we consider a simple

equal-weighted forecast combination scheme (Bates and Granger, 1969, Timmermann,

2006, Rapach et al., 2010). We denote this combined forecast by EW. The combined

forecast generates positive R2
OS values from 6.08% for the two-year bond to 4.58% for the

five-year bond. These values are all significant according to the DM p-value at the five

percent level. That is, although no individual predictor is able to consistently outperform

the EH, a simple equal-weighted average of the individual forecasts is.

[Insert Figure 4 About Here]
18Note that this is the unconditional version of the test statistic in Giacomini and White (2006) which

is nested within our framework for p = 1.
19We provide in-sample predictive regression results in the Internet Appendix, where we show that our

set of predictors are reliably related to bond risk premia when using the full range of available information.
20In unreported results, we indeed find that most of your R2

OS values improve when considering
a forecasting environment with an expanding window instead. However, the qualitative results and
conclusions are very similar.
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Figure 4 plots the cumulative difference in squared prediction errors (CDSPE) between

the EH and the ith predictor model

CDSPE(k)
t,i =

t∑
l=R+1

(
rx

(k)
l − r̂x

(k)
l,EH

)2
−

t∑
l=R+1

(
rx

(k)
l − r̂x

(k)
l,i

)2
, (24)

where R + 1 denotes the time of the first forecast and r̂x
(k)
t+1,i and r̂x

(k)
t+1,EH denote the

forecast from the ith predictor model and the EH benchmark, respectively. This graphical

device is suggested by Goyal and Welch (2008) as a way to assess relative performance

over time (and is thus indirectly a visual inspection of state-dependencies). Figure 4 plots

the CDSPEs against economic activity and uncertainty states identified using PMI and

U, respectively, to assess the relation between relative forecasting performance and our

state variables. The plots supports the use of conditioning variables that tracks salient

features of the business cycle and that these are related to relative predictive abilities. For

instance, CS and FB derive a sizable portion of their overall positive performance from

high (low) economic activity (uncertainty) period. This is consistent with Andreasen et al.

(2018). Moreover, CS and FB appears to provide valuable information over the 2008 to

2018 periods, which is consistent with the stronger relationship between the slope of the

yield curve and future excess bond returns documented in Andreasen et al. (2019). PC and

CP are consistently poor, and especially so in low (high) economic activity (uncertainty)

periods, whereas LN initially performs well, but particularly poorly at the end of the latest

financial crisis. Consistent with the positive R2
OS values in Table 4, the equal-weighted

forecast combination (EW) performs well over the entire evaluation period.

4.2. Testing for equal conditional predictive ability

The previous section establishes that linear predictive methods are unable to reliably beat

the EH on average. However, this does not exclude the possibility that some methods

provide significantly better forecast in certain states of the world. To investigate this

hypothesis more formally, we consider our multivariate test for equal conditional predictive

ability introduced in Section 3. A rejection of the null of equal conditional predictive ability

implies that some methods are better than others and that relative forecasting performance
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is predictable by the state variable(s). If conditional forecast performance is predictable,

then it may be possible to exploit this information to generate more informative forecasts.

A natural way to do so, which we explore in more detail below, is to combine across

forecasts methods with indistinguishable conditional predictive ability. Throughout the

empirical analysis, we consider three specifications for the state regression. First, we

consider the information in PMI to examine if predictive ability is related to economic

activity and specify the state function as ht = (1,PMIt)′. Second, we specify ht = (1,Ut)′

to study the effect of macroeconomic uncertainty. Last, we also consider an unconditional

version of the multivariate test in which we set ht = 1 for all t. We denote this by NONE.

[Insert Table 5 About Here]

Table 5 reports test statistics and corresponding p-values for our multivariate test

for equal (un)conditional predictive ability over the evaluation period using the three

specifications for the state regression discussed above using: PMI, U, and NONE. The

implementation is based on a sample covariance matrix as dictated by theory (see Section 3

and the Internet Appendix).21 We find strong rejections of the null hypothesis of equal

conditional predictive ability for both specifications of ht that uses conditioning information

representing salient features of the business cycle across all maturities, indicating that there

is substantial evidence favoring state-dependencies in bond excess return predictability.

The unconditional test, on the other hand, fails to reject equal predictive abilities across all

models and maturities. In other words, our choice of state variables enables the detection

of conditional differences.

4.3. Full out-of-sample period ranking and elimination

Having established that bond return predictability is state-dependent and related to state

variables tracking economic activity and uncertainty, we now turn to a more detailed

analysis of this link. We first study the ranking and elimination of models over the full
21We note that NONE should, in theory, by evaluated using a HAC estimator, but we use a sample

estimator here to ease comparison. However, results are both qualitative and quantitatively similar when
employing a Newey and West (1987) estimator with a bandwidth of 12 lags.
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out-of-sample period and, subsequently in Section 4.4, how to use the information in a

real-time forecasting exercise.

[Insert Figure 5 About Here]

Our state variables, PMI and U, are continuous variables. To facilitate interpretation

and later empirical analyses, we therefore classify our sample into low, normal, and high

economic activity (uncertainty) periods using the 20% and 80% quantiles of the time series

for PMI (U), similarly to Rapach et al. (2010). Figure 5 illustrates the full out-of-sample

elimination order of the predictive models when conditioning on the low, normal, and high

PMI and U states, respectively, using a 10% significance level. Specifically, whenever we

reject the null of equal predictive ability, we use the ranking rule discussed in Section 3,

which determines the order of elimination and the best set of models within each state. The

patterns that emerge are striking. First, the EH is always excluded in the high economic

activity state across the entire maturity spectrum. If we interpret EH as a no-predictability

benchmark, this implies that bond risk premia are predictable when economic activity is

high. Conversely, the EH is always included in the best set of models in the low economic

activity state, suggesting that bond risk premia are unpredictable when the economy is

doing poorly. This is consistent with the in-sample result in Andreasen et al. (2018) which

focus on yield curve slope risk only. LN, PC, FB, and CS are instead (mostly) included

in (excluded from) the best set of methods in periods with high (low) economic activity.

Using U as our state variable produces similar results. The EH is always included in

(excluded from) the best set of methods in high (low) uncertainty states. Last, the EH

is usually included in the best of methods in normal times, where LN, CP, and PC are

usually excluded.

Overall, we argue that our empirical results are consistent with, and clearly points

to, state-dependencies in bond excess return predictability linked to economic activity

and uncertainty. Bond excess returns are predictable in states with high (low) economic

activity (uncertainty), whereas the EH serves as a reliable anchor in the remaining states

of the world.
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4.4. Dynamic forecast combination

Bond excess return predictability displays state-dependencies over the full out-of-sample

period. As a natural next step, we investigate if they can be exploited to improve out-

of-sample forecasts in real-time. As detailed in Section 3.6.2, we consider a dynamic

rule that enables the identification at each point time of the best set of methods with

indistinguishable conditional predictive ability. If the set consists of a single method, then

we rely on the forecasts for that method. If the set consists of two or more models, we

perform forecast combination within the set using equal weights. Forecast combination

has since the seminal work of Bates and Granger (1969) been viewed as an elegant way

to improve forecast accuracy and combinations of individual forecasts often deliver more

accurate forecasts than using the single best model (Timmermann, 2006). However, as

pointed out in Aiolfi et al. (2011), little focus has been put on determining the optimal

set of models to combine given a potential pool of predictors. We view our procedure

as a way to do exactly that. It identifies the best set of forecasting methods whose

conditional predictive ability is indistinguishable.22 We denote this set by M∗
t and note

that its composition may vary over time and is identical to the standard equal-weighted

combination forecasts when all models exhibit equal conditional predictability, whereas it

collapses to dynamic method selection if the set is a singleton. For cases in between, we

simply average across the selected forecasting methods in M∗
t .

Panel B of Table 4 presents the results for our dynamic forecast combination scheme

using PMI and U, respectively, as conditioning variables and using NONE as the uncondi-

tional alternative. This unconditional alternative is related to Samuels and Sekkel (2017)

who suggest trimming a given set of models using a recursive implementation of the MCS.

Our conditional alternative achieves trimming using a conditional MCS idea with the

elimination based on the predictability of bond excess return predictability. One can view

this as a dynamic extension of the trimming strategy considered in, among others, Rapach

et al. (2010). Strikingly, this strategy delivers positive R2
OS values relative to the EH across

22Recent alternative suggestions include determining the optimal set based on past performance (Aiolfi
and Timmermann, 2006), the model confidence set (Samuels and Sekkel, 2017), and lasso-based procedures
(Diebold and Shin, 2018).

31



all conditioning variables and bond maturities. R2
OS values are economically large with

values between 5.11% and 7.98% for PMI and between 4.98% and 9.86% for U. Moreover,

these values generally exceed even those of the EW strategy with some margin. All (most)

are significant relative to the EH (EW) at conventional levels when using either PMI or U,

whereas NONE does not deliver significant improvements against the EW.

[Insert Figure 6 About Here]

Figure 6 plots the CDSPE for our two dynamic forecast combination strategies and

the unconditional alternative NONE relative to the EH. Overall, we find that relative

forecasting gains are mostly uniformly distributed across the out-of-sample evaluation

period and that no particular event or period drive the positive results, although we

do observe a particularly forceful increase during the latest recession relative to the EH

benchmark for the five-year bond using PMI as the state variable.

[Insert Figure 7 About Here]

Figure 7 plots the CDSPE for our two dynamic forecast combination strategies and

NONE relative to EW. As above, we find that that our dynamic forecast combination strat-

egy always performs on par or better than EW. This is also reflected in Panel C of Table 4

in which we observe positive R2
OS values that are of economically meaningful magnitudes

and most are significant at conventional significance levels. These relative forecasting

gains are concentrated in periods with low (high) economic activity (uncertainty). That

is, our dynamic forecast combination scheme delivers improvements in forecast accuracy

in periods of turmoil, exactly when investors and forecasters arguably needs it the most.

Moreover, we see that trimming the set of candidate methods prior to combination using a

dynamic rule rooted in our multivariate test for equal conditional predictive ability delivers

sizable improvements.

In sum, our results establish that bond return predictability display predictable and

exploitable state-dependencies in an out-of-sample forecasting exercise. Our results are

further supportive of the notion that bond return predictability itself is linked to variables

capturing economic activity and uncertainty.
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5. Understanding the sources of conditional predictability

This section studies the underlying sources of conditional predictability and the sizable

improvements in predictive accuracy established above. We address this in several steps.

First, we compute inclusion frequencies for each forecasting method and conditioning

variable using the low, normal, and economic activity and uncertainty regimes, respectively,

identified earlier. We then study how the individual methods perform in each state and

relate it to the overall performance. Third, we inspect the methods selected by the decision

rule over time.

5.1. Inclusion frequencies

We compute inclusion frequencies for each forecasting method and state variable using the

low, normal, and high states for economic activity (PMI) and uncertainty (U), respectively,

defined in Section 4.2. Within each state sa, we then define the inclusion frequency of the

ith forecasting method as the fraction of months the model is included in the best set

relative to the total number of months in state a.

[Insert Table 6 About Here]

Table 6 reports the inclusion frequencies for bond return predictor models when

conditioning on PMI and U, respectively. These inclusion frequency largely mirror the

image from the full sample elimination order in Figure 5. The EH is almost always included

in the low activity state, whereas the inclusion frequencies are low for the high activity

state. That is, bond excess returns are predictable in high economic activity states, but

less so in other states. The EH, conversely, provides a reliable anchor in periods with

low and normal economic activity. A similar conclusion is reached when conditioning on

macroeconomic uncertainty. EH is almost always included in the high uncertainty state,

but rarely in the low uncertainty state. PC, CP, and LN, on the other hand, is mostly

included in high (low) economic activity (uncertainty) states.
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5.2. State-dependent predictability

The inclusion frequencies are indicative of when certain models are predicted to do well.

In this section, we ask whether the inclusion frequencies align with relative performance.

That is, we ask whether the procedure correctly identifies methods with good and bad

relative performance.

[Insert Table 7 About Here]

Table 7 reports state-specific R2
OS values for the individual predictors relative to the

EH. The results are supportive of the procedure correctly identifying methods that do

well. We find that individual predictors are generally performing poorly (R2
OS < 0) in low

(high) economic activity (uncertainty) states and well (R2
OS > 0) in high (low) economic

activity (uncertainty) states. This is consistent with the inclusion frequencies of the

EH. Specifically, the procedure appears to correctly anticipate periods in which the EH

provides a reasonable anchor for expected bond excess returns and period in which bond

risk premia are predictable. Moreover, there is also a close mapping between the inclusion

frequencies and the magnitudes of the R2
OS values, where models are more likely to be

included (excluded) in a given state the higher (lower) its R2
OS. That is, the gains in

predictive accuracy are coming from the rule’s ability to correctly predict predictability.

5.3. Decision rule and model selection

Figure 8 illustrates the models selected for the best set of models using the decision rule

over time using PMI and U as conditioning variables, respectively. Green (yellow) shaded

aras indicate high (low) states identified using the 20% and 80% quantiles of the series. A

“+” indicates inclusion.

[Insert Figure 8 About Here]

[Insert Figure 9 About Here]

Figures 9 illustrates the size of the set of best models selected over time using the

decision rule using PMI and UNC as conditioning variables, respectively. We note that
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the best set of models varies considerably over time and includes situations in which the

set include all models, leading to forecasts equal to EW, and situations with a singleton.

That is, at times there is no need for trimming of the full set of models and at other

times we should only use the forecasts from a single model. Importantly, this tells us that

dynamically trimming leads to improvements over a simple, static trimming rule.

6. Links to the real economy

In this section, we examine the link between our out-of-sample bond risk premia fore-

casts and the real economy. Standard finance theory implies that investors demand a

compensation for risks associated with recessions (or macroeconomic activity in general)

due to heightened risk aversion, see, among many, Fama and French (1989), Campbell

and Cochrane (1999), Wachter (2006), Cochrane (2017), and Bekaert et al. (2019). That

is, bond risk premia ought to be countercyclical and spike in recessions (Ludvigson and

Ng, 2009, Joslin et al., 2015, Andreasen et al., 2018).

[Insert Table 8 About Here]

We employ PMI as our measure of economic activity (Berge and Jordà, 2011) and report

in Table 8 the contemporaneous correlation among PMI and the risk premia estimates from

the set of individual models, EW, and the dynamic forecast combinations generated by

PMI, U, and NONE. The results offer two main insights. First, yield-based variables such

as CP, FB, PC, and CP all deliver risk premia estimates that are significantly positively

correlated with real economic activity. That is, these models imply procyclical risk premia,

which sharply contrasts canonical theory. LN, on the other hand, obtains a significant

negative correlation of about -38% across the maturity spectrum, which is consistent with

countercyclical risk premia. Interestingly, the EW combination strategy produces risk

premia estimates with almost identically zero correlation with the real economy. That

is, even though the EW combination produces significantly more accurate forecasts, cf.

Table 4, they are acyclical and unrelated to the state of the economy. The acyclicality

is likely to be caused by the, apparently too crude, equal-weighting across counter and
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procyclical forecasts. Our dynamic combination strategy that selects individual methods

for subsequent combination, based on information in the state variables, produces markedly

negative and statistically significant correlations with the real economy. As such, our

conditional view and associated trimming rule provides both economically meaningful risk

premia estimates, through marked countercyclicality, and much stronger predictability.23

[Insert Figure 10 About Here]

Supporting this, Figure 10 depicts our dynamic combination forecast using PMI and U

as state variables, along with NBER-dated recessions. We see a clear tendency for the risk

premia estimates to increase during recessionary periods and decline during expansionary

periods, resembling a countercyclicality in business cycles. These findings altogether

demonstrate the importance of appropriately selecting among plausible models, as done in

the present paper.

7. Economic value

This section measures the economic value of the strong predictive improvements established

above for our dynamic forecast combination strategy. Specifically, we consider the asset

allocation decision of an investor with mean-variance preferences and relative risk aversion

γ that chooses the weight ω(k)
t to invest in a k-period bond and the weight

(
1− ω(k)

t

)
to

invest in a one-period safe bond (Marquering and Verbeek, 2004).24 The resulting portfolio

return is then

r
(k)
p,t+1 = y

(1)
t + ω

(k)
t rx

(k)
t+1, (25)

23Other types of business cycle indicators can naturally be entertained. We report in the Internet
Appendix contemporaneous correlations among generated forecasts and each of the macroeconomic
uncertainty (U), recession probabilities of Chauvet and Piger (2008), the Chicago Fed National Activity
Index (CFNAI), and logarithmic growth rates to industrial production growth. It stands out that our
dynamic forecasting combination technique leads to much stronger countercyclical bond risk premia than
all yield-based variables and EW.

24Assuming that investors have mean-variance preferences in asset allocation exercises has a long
tradition in predictability studies and similar approaches can be found in, among many, Campbell and
Thompson (2008), Goyal and Welch (2008), Wachter and Warusawitharana (2009), Thornton and Valente
(2012), Sarno et al. (2016), Eriksen (2017), Ghysels et al. (2018), and Gargano et al. (2019).
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where rx(k)
t+1 denotes monthly bond excess returns for a Treasury bond with k periods until

maturity. We assume that the investor has a utility function, U(r(k)
p,t+1), of the form

U(r(k)
p,t+1) = Et

[
r

(k)
p,t+1

]
− 1

2γVart
[
r

(k)
p,t+1

]
, (26)

where γ denotes the Pratt-Arrow measure of relative risk aversion. Solving the maximiza-

tion problem yields the optimal portfolio weights

ω
(k)
t = 1

γ

Et
[
rx

(k)
t+1

]
Vart

[
rx

(k)
t+1

] , (27)

where Et
[
rx

(k)
t+1

]
is estimated using the ith predictive method and Vart

[
rx

(k)
t+1

]
is computed

using a rolling window of past bond excess return realizations.25 We winzorize weights

according to reasonable leverage and shorting constraints, similarly to Thornton and

Valente (2012) and Gargano et al. (2019), such that ω(k)
t ∈ [−1, 2] for all maturities.

Using the sequence of portfolio weights, we can compute the average utility, or certainty

equivalent return (CER), for each forecast method using (26). We similarly compute the

CER for the EH benchmark prediction in lieu of the predictive models. The CER gain

is then the difference between the CER for the predictive models and the CER for the

EH benchmark. We annualize the CER gain so that it can be interpreted as the annual

portfolio management fee that an investor would be willing to pay to have access to the

information in the predictive forecast relative to the EH benchmark.26 In this way, we

measure directly the economic value of bond excess return predictability.

7.1. Certainty equivalent returns

Table 9 reports annualized CER gains for all individual bond predictors (for comparison)

relative to the EH in Panel A and for our dynamic forecast combination strategy relative

to the EH and the equal-weighted combination strategy in Panels B and C, respectively.

In our main results, we set γ = 10 as in Eriksen (2017), but show in the Internet Appendix
25We always use the same variance estimated over the same period as the forecasts for all models so

that the optimal portfolio weights only differ because of differences in the excess bond return forecast.
26Trading costs are generally small in U.S. Treasury bond markets (Adrian, Fleming, and Vogt, 2017).

37



that our results are almost identical for lower values of relative risk aversion, e.g. γ = 5.

In order to evaluate the statistical significance of the CER gains, we follow Eriksen (2017)

and Gargano et al. (2019) and conduct a conventional t-test on the mean of the time series

of realized utility differences, evaluated using a Newey and West (1987) estimator for the

standard errors.

[Insert Table 9 About Here]

Overall, we find little evidence of individual predictive models reliably generating

economic value. The exception is LN that generally do remarkably well utility-wise,

something that starkly contrast the statistical results. CS and FB do poorly for the two-

and three-year maturities, but obtains positive CER gains for the four- and five-year

maturities, albeit not significantly so. PC and CP are overall unable to deliver any

economic value to an investor above that provided by the EH benchmark. LN, on the

other hand, delivers positive and significant CER gains across the full maturity spectrum.

Overall, we find little evidence that predictable deviations from the EH can be exploited

to generate economic value on average when considering individual methods. EW, on the

other hand, obtains positive CER gains for all maturities, indicating that combination

forecasts may improve the economic value.

Panel B considers the CER gains for our dynamic forecast combination scheme for

PMI, U, and NONE. Consistent with our statistical results, we obtain positive CER gains

in almost all instances and many are reliably different from zero. The PMI-based dynamic

forecast scheme delivers positive CER gains between 0.39 and 1.43, which are significantly

different from zero at the ten percent level for all maturities. The U-based dynamic forecast

scheme similarly delivers positive values that are significant for the longer maturity bonds.

NONE is mostly delivering less economic value than PMI and U. As such, the overall

message is clearly supportive of the notion that taking state-dependencies in bond return

predictability into account leads to substantial improvements in forecasting accuracy and

that these improvement translates into better investment performance for a mean-variance

investor that trades in the U.S. Treasury bond market.

Panel C mirrors this conclusion by documenting positive CER gains for the dynamic
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forecast combination strategies relative to EW. All PMI-based CER gains are statistically

significant at the ten percent level and the U-based CER gains are significant for the three-

and four-year bonds. We argue that this strongly supports the idea that dynamically trim-

ming the set of models prior to averaging can substantially improve forecast performance

and the resulting economic value. That is, eliminating forecasting methods predicting to

perform poorly and only maintaining methods with indistinguishable conditional predictive

ability delivers both statistical as well as economic value.

[Insert Figure 11 About Here]

[Insert Figure 12 About Here]

Figures 11 and 12 plots the cumulative realized utilities for our dynamic forecast

combination strategies relative to the EH and the EW, respectively. Overall, we note that

utility gains are enjoyed uniformly over the out-of-sample period relative to the EH. This

is remarkable as our approach is not designed to capture utility, but predictability.

7.2. State-dependent utility

Analogous to Section 5.2, we report in Table 10 the state-dependent CER gains for the

individual predictors relative to the EH.

[Insert Table 10 About Here]

We find that individual predictors are generally delivering negative CER gains in

low (high) economic activity (uncertainty) states and positive CER gains in high (low)

economic activity (uncertainty) states. This is fully consistent with the results from the

statistical evaluation and suggest that PMI and U predict not only statistical performance,

but economic value as well. The only difference is LN, which generally delivers positive

CER gains across all states and maturities. That is, although it looks poor overall from a

statistical point of view, it is superior from an economic point of view.
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8. Concluding remarks

We study predictable state-dependencies in bond return predictability and provide empirical

evidence consistent with bond return predictability being state-dependent and closely

related to economic activity and macroeconomic uncertainty. We show that bond risk

premia are predictable in times of high (low) economic activity (uncertainty) states

identified using the the Purchasing Managers’ Index (PMI) and the uncertainty index

proposed in Jurado et al. (2015), whereas the EH implication of constant risk premia (no-

predictability) provides a reasonable anchor in low (high) economic activity (uncertainty)

states. A dynamic forecast combination strategy that averages across forecasting methods

predicted to do well delivers forecasts that are substantially more informative than a

simple, static equal-weighted forecast combination scheme. This holds both across standard

statistical evaluation metrics and when considering the economic value to a mean-variance

investor that trades in the U.S. Treasury bond market. We provide evidence that the

improved forecast performance originates from the state variables ability to correctly

predict periods in which individual predictors are likely to perform well.

To facilitate our empirical analysis, and to explicitly take into account the fact that

we have more than two forecasting methods to distinguish between, we develop a new

multivariate statistical test for equal conditional and unconditional predictive ability.

The test is a multivariate generalization of the test presented in Giacomini and White

(2006) and therefore inherits the main properties of their test. Most importantly for our

application, it allows for a mixture of nested and non-nested models. Our dynamic forecast

combination strategy is rooted in this test and delivers a simple and intuitive way to trim

the pool of candidate forecasting methods prior to averaging.

We end by emphasizing that our multivariate test of conditional predictive ability is

not confined to studies of the Treasury bond market, but may find many and diverse

applications across the fields of economics and finance. For instance, it would be natural

to study the conditional predictive ability of, say, the Goyal and Welch (2008) set of

predictors in a multivariate setting as a complement to the large literature on their
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unconditional performance. Indeed, recent studies suggest that state-dependencies are

present in stock return predictability Henkel et al. (2011), Dangl and Halling (2012),

Farmer et al. (2019). Similarly, the approach is likely to be useful in evaluating inflation

predictability and identifying periods in which variables such as unemployment rates

provides useful information. Finally, we also envision its use in comparing professional

forecasters and, in particular, to determine if some forecasters are better than others

conditional on being in a certain state. We leave these considerations for future research.
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Table 1: Descriptive statistics
This table presents descriptive statistics for monthly excess bond returns. Panel A reports
mean, standard deviation, skewness, kurtosis, Sharpe ratios, and first-order autocorrelation
(AC(1)) of bond excess returns for two- to five-year bond maturities. Bond returns are in
excess of the implied yield on a one-month Treasury bill. Gross returns do not subtract
the one-month implied Treasury bill yield. Monthly bond excess returns are constructed
using end-of-month Treasury yield data from Gürkaynak et al. (2007). Panel B reports
contemporaneous correlations between the excess bond return series. The sample period
is January 1962 to December 2018.

2-year bond 3-year bond 4-year bond 5-year bond

Panel A: Descriptive statistics

Mean 1.29 1.60 1.85 2.06
Mean (Gross) 5.73 6.04 6.29 6.50
Std. dev. 2.80 3.92 4.95 5.93
Skewness 0.57 0.25 0.08 0.03
Kurtosis 16.68 11.76 8.58 7.05
Sharpe ratio. 0.46 0.41 0.37 0.35
AR(1) 0.17 0.15 0.13 0.12

Panel B: Correlations

2-year bond 1.00
3-year bond 0.99 1.00
4-year bond 0.96 0.99 1.00
5-year bond 0.93 0.97 0.99 1.00
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Table 3: Empirical size properties
This table reports the rejection frequency (empirical size) of the multivariate test for equal
predictive ability with a nominal size of 5%, data-generating process given by (22) with
µ = 0, and 10,000 Monte Carlo replications. We implement an unconditional test that
sets ht = 1 for all t and a conditional test that sets ht = (1, h̃t)′, and use three samples
sizes referred to as short (120 observations), medium (348 observations) and long (1,000
observations). Panel A (B) reports results where εt+1 in (22) is sampled from the empirical
loss differentials when forecasting the 2-year (5-year) bond. The value of p indicates the
dimension of the test arising from the number of comparing models less one.

Unconditional test (ht = 1) Conditional test (ht = (1, h̃t)′)

Short Medium Long Short Medium Long

Panel A: 2-year bond

p = 1 5.22 5.08 4.84 5.48 4.82 5.08
p = 2 4.65 4.99 5.09 4.85 5.27 4.98
p = 3 4.82 5.34 4.88 5.33 5.38 5.17
p = 4 4.91 5.12 5.03 4.84 5.27 5.14
p = 5 5.22 4.61 4.76 4.62 5.10 5.29

Panel B: 5-year bond

p = 1 4.73 4.87 5.26 3.96 4.53 4.99
p = 2 4.36 4.56 4.99 4.07 4.48 4.92
p = 3 4.05 4.47 4.99 3.79 4.56 4.78
p = 4 4.38 4.24 4.96 3.69 4.34 5.11
p = 5 4.30 4.59 5.02 3.22 4.50 4.89
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Table 4: Out-of-sample results
This table reports out-of-sample R2

OS values for various linear predictive models for bond
excess return. We consider five different predictors: yield spreads (Campbell and Shiller,
1991), forward spreads (Fama and Bliss, 1987), principal components of yields (Litterman
and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor, and the
Ludvigson and Ng (2009) macroeconomic factor. For each model, we report the out-
of-sample R2 from Campbell and Thompson (2008) and the associated Diebold and
Mariano (1995) p-value in parenthesis for the null of no predictability implied by the EH
(Panels A and B) and a static forecast combination strategy (Panel C). PMI denotes the
Purchasing Managers Index published by the Institute for Supply Management and U

is the macroeconomic uncertainty index from Jurado et al. (2015). The out-of-sample
evaluation period runs from January 2000 to December 2018.

2-year 3-year 4-year 5-year

Panel A: Individual bond predictors against EH

CS -2.73 -0.53 0.67 1.38
(0.70) (0.56) (0.40) (0.27)

FB -0.02 1.31 1.72 1.78
(0.50) (0.29) (0.22) (0.23)

PC -9.86 -7.64 -5.91 -4.83
(0.92) (0.93) (0.92) (0.90)

CP -6.63 -5.29 -4.27 -3.43
(0.96) (0.96) (0.94) (0.90)

LN -7.61 -0.48 1.93 2.43
(0.73) (0.52) (0.42) (0.39)

EW 6.08 5.28 4.89 4.58
(0.03) (0.02) (0.02) (0.02)

Panel B: Dynamic forecast combination against EH

PMI 7.98 5.64 5.11 6.16
(0.01) (0.02) (0.02) (0.01)

U 9.86 6.77 6.09 4.98
(0.01) (0.00) (0.00) (0.01)

NONE 6.66 5.31 5.25 4.81
(0.02) (0.02) (0.01) (0.02)

Panel C: Dynamic forecast combination against EW

PMI 2.02 0.39 0.23 1.66
(0.01) (0.24) (0.33) (0.06)

U 4.02 1.58 1.26 0.42
(0.02) (0.00) (0.00) (0.22)

NONE 0.62 0.04 0.38 0.24
(0.21) (0.47) (0.16) (0.32)

54



Table 5: Testing for equal (un)conditional predictive ability
This table reports full sample multivariate test statistics for equal (un)conditional predictive
ability using three different conditioning variables. PMI refers to the case of ht = (1,PMIt)′
that is designed to capture business cycle fluctuations. U refers to the case of ht = (1,Ut)′
that is chosen to study the effect of macroeconomic uncertainty. NONE refers to an
unconditional version of the tests in which ht = 1 for all t. PMI is the Purchasing
Managers’ Index and UNC is the macroeconomic uncertainty index of Jurado et al. (2015).
p-values are presented in parenthesis. The full sample test period runs from January 1990
to December 2018.

2-year bond 3-year bond 4-year bond 5-year bond

PMI 31.36 34.65 29.76 26.73
(0.00) (0.00) (0.00) (0.00)

U 27.03 27.95 26.16 26.22
(0.00) (0.00) (0.00) (0.00)

NONE 8.07 5.68 5.10 5.77
(0.15) (0.34) (0.40) (0.33)
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Table 6: Inclusion frequencies across states
This table reports the inclusion frequencies of the predictor models in three different states
of the world identified using the 20% and 80% quantiles of the Purchasing Managers’
Index (PMI). We consider five different predictors: yield spreads (Campbell and Shiller,
1991), forward spreads (Fama and Bliss, 1987), principal components of yields (Litterman
and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor, and the
Ludvigson and Ng (2009) macroeconomic factor. EH denotes the benchmark expectations
hypothesis model. The out-of-sample evaluation periods runs from January 2000 to
December 2018.

2-year 3-year 4-year 5-year 2-year 3-year 4-year 5-year

Panel A: Low activity Panel D: Low uncertainty

CS 1.00 1.00 1.00 1.00 0.25 0.64 0.64 0.57
FB 0.94 1.00 0.88 0.76 0.25 0.64 0.64 0.57
PC 0.45 0.36 0.42 0.42 1.00 1.00 0.93 1.00
CP 0.88 0.91 1.00 1.00 0.25 0.57 0.54 0.46
LN 0.73 0.67 0.70 0.64 0.96 1.00 1.00 1.00
EH 0.97 1.00 1.00 1.00 0.18 0.50 0.57 0.46

Panel B: Normal activity Panel E: Normal uncertainty

CS 0.86 0.90 0.94 0.98 0.69 0.88 0.86 0.84
FB 0.90 0.98 0.98 0.95 0.79 0.93 0.88 0.76
PC 0.51 0.41 0.47 0.50 0.43 0.53 0.54 0.58
CP 0.65 0.68 0.68 0.62 0.62 0.71 0.63 0.51
LN 0.71 0.79 0.87 0.86 0.83 0.85 0.90 0.92
EH 0.70 0.84 0.85 0.82 0.63 0.83 0.85 0.75

Panel C: High activity Panel F: High uncertainty

CS 0.58 0.75 0.85 0.93 0.95 1.00 1.00 0.98
FB 0.65 0.80 0.88 0.83 0.95 1.00 0.98 0.95
PC 0.83 0.74 0.78 0.88 0.49 0.51 0.44 0.28
CP 0.53 0.53 0.45 0.08 0.95 1.00 0.98 0.98
LN 1.00 1.00 1.00 0.95 0.72 0.98 0.95 1.00
EH 0.33 0.45 0.45 0.48 1.00 1.00 1.00 0.98
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Table 7: Out-of-sample R2 across states
This table reports out-of-sample R2

OS values for various linear predictive models for bond
excess return conditional on states identified by the Purchasing Manager’s Index (PMI)
and the the macroeconomic uncertainty index (U) proposed in Jurado et al. (2015). We
consider five different predictors: yield spreads (Campbell and Shiller, 1991), forward
spreads (Fama and Bliss, 1987), principal components of yields (Litterman and Scheinkman,
1991), the Cochrane and Piazzesi (2005) forward rate factor, and the Ludvigson and Ng
(2009) macroeconomic factor. For each model, we report the out-of-sample R2 from
Campbell and Thompson (2008) relative to the expectations hypothesis. High (low)
states are identified using the 80% (20%) quantiles of the time series of PMI and U. The
out-of-sample evaluation period runs from January 2000 to December 2018.

2-year 3-year 4-year 5-year 2-year 3-year 4-year 5-year

Panel A: Low activity Panel D: Low uncertainty

CS -19.73 -10.56 -6.41 -3.85 14.33 9.87 7.79 6.40
FB -13.17 -6.09 -3.43 -2.22 15.19 8.57 5.00 3.03
PC -37.08 -26.84 -20.98 -17.02 24.53 16.39 12.09 10.05
CP -13.30 -7.27 -3.54 -0.83 -83.09 -42.16 -23.01 -12.28
LN -23.94 -15.44 -12.03 -11.24 14.05 10.04 7.52 5.73

Panel B: Normal activity Panel E: Normal uncertainty

CS 2.16 1.68 1.95 2.20 -2.64 -0.51 0.61 1.28
FB 4.26 3.25 2.90 2.62 1.09 1.78 2.00 2.00
PC -5.04 -5.29 -4.19 -3.26 -4.86 -4.46 -3.44 -2.74
CP -6.09 -6.42 6.06 -5.61 -1.03 -2.14 -2.56 -2.90
LN -2.58 3.8 5.78 6.25 -2.15 4.31 6.44 7.16

Panel C: High activity Panel F: High uncertainty

CS 6.86 5.32 5.38 5.78 -4.29 -2.03 -0.67 0.30
FB 4.44 3.79 3.83 4.02 -2.82 -0.55 0.50 0.98
PC 20.26 12.96 9.43 7.36 -19.49 -16.08 -13.96 -12.51
CP 9.32 7.30 6.43 6.00 -7.19 -4.90 -3.26 -1.81
LN -8.41 -2.57 0.26 2.18 -18.80 -11.59 -8.99 -8.73
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Table 8: Correlations between forecasts and economic activity
This table reports correlation coefficients between out-of-sample generated forecasts from
individual bond predictors (Panel A) and the dynamic forecast strategy (Panel B) and
economic activity as measured by the Purchasing Managers’ Index (PMI). We report
p-values for the null of no correlation in parenthesis. The out-of-sample evaluation period
runs from January 2000 to December 2018.

2-year bond 3-year bond 4-year bond 5-year bond

Panel A: Individual bond predictors

CS 0.36 0.31 0.27 0.23
(0.00) (0.00) (0.00) (0.00)

FB 0.27 0.19 0.14 0.09
(0.00) (0.00) (0.01) (0.08)

PC 0.33 0.36 0.36 0.35
(0.00) (0.00) (0.00) (0.00)

CP 0.15 0.16 0.16 0.16
(0.01) (0.00) (0.00) (0.00)

LN -0.38 -0.38 -0.38 -0.38
(0.00) (0.00) (0.00) (0.00)

EH 0.07 0.14 0.16 0.17
(0.17) (0.01) (0.00) (0.00)

EW 0.01 0.01 0.00 -0.01
(0.88) (0.87) (0.98) (0.90)

Panel B: Dynamic forecast combination

PMI -0.39 -0.40 -0.39 -0.35
(0.00) (0.00) (0.00) (0.00)

U -0.40 -0.36 -0.37 -0.39
(0.00) (0.00) (0.00) (0.00)

NONE -0.29 -0.26 -0.27 -0.28
(0.00) (0.00) (0.00) (0.00)
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Table 9: Economic Value
This table reports certainty equivalent return (CER) gains for various linear predictive
models for bond excess return. We consider five different predictors: yield spreads
(Campbell and Shiller, 1991), forward spreads (Fama and Bliss, 1987), principal components
of yields (Litterman and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward
rate factor, and the Ludvigson and Ng (2009) macroeconomic factor. For each model, we
report the CER gains relative to the expectations hypothesis (Panels A and B) and a
static forecast combination strategy (Panel C). PMI denotes the Purchasing Managers
Index published by the Institute for Supply Management and U is the macroeconomic
uncertainty index from Jurado et al. (2015). CER gains are based on an investor with
mean-variance preferences and a relative risk aversion of γ = 10. The out-of-sample
evaluation period runs from January 2000 to December 2018.

2-year 3-year 4-year 5-year

Panel A: Individual bond predictors against EH

CS -0.64 -0.35 0.10 0.45
(0.90) (0.75) (0.43) (0.20)

FB -0.43 -0.12 0.32 0.58
(0.84) (0.62) (0.24) (0.17)

PC -1.65 -1.78 -1.65 -1.44
(0.98) (0.96) (0.93) (0.89)

CP -0.66 -0.83 -0.76 -0.48
(0.96) (0.95) (0.87) (0.73)

LN 0.85 1.75 2.32 2.74
(0.00) (0.00) (0.00) (0.00)

EW 0.10 0.34 0.86 1.07
(0.36) (0.16) (0.03) (0.02)

Panel B: Dynamic forecast combination against EH

PMI 0.39 0.59 1.05 1.43
(0.08) (0.06) (0.02) (0.00)

U 0.26 0.60 1.17 1.18
(0.16) (0.05) (0.01) (0.02)

NONE 0.17 0.33 0.92 1.16
(0.26) (0.19) (0.03) (0.02)

Panel C: Dynamic forecast combination against EW

PMI 0.28 0.25 0.19 0.37
(0.01) (0.04) (0.09) (0.03)

U 0.16 0.25 0.31 0.12
(0.06) (0.02) (0.01) (0.27)

NONE 0.06 -0.02 0.06 0.09
(0.13) (0.56) (0.24) (0.26)
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Table 10: CER gains across states
This table reports certainty equivalent return (CER) gains for various linear predictive
models for bond excess return conditional on states identified by the Purchasing Manager’s
Index (PMI) and the the macroeconomic uncertainty index (U) proposed in Jurado
et al. (2015). We consider five different predictors: yield spreads (Campbell and Shiller,
1991), forward spreads (Fama and Bliss, 1987), principal components of yields (Litterman
and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor, and the
Ludvigson and Ng (2009) macroeconomic factor. For each model, we report the CER gain
relative to the expectations hypothesis. High (low) states are identified using the 80%
(20%) quantiles of the time series of PMI and U. CER gains are based on an investor
with mean-variance preferences and a relative risk aversion of γ = 10. The out-of-sample
evaluation period runs from January 2000 to December 2018.

2-year 3-year 4-year 5-year 2-year 3-year 4-year 5-year

Panel A: Low activity Panel D: Low uncertainty

CS -3.22 -2.41 -2.04 -2.05 0.02 0.08 1.29 1.68
FB -2.44 -1.82 -1.83 -2.70 0.01 0.16 0.98 0.86
PC -7.17 -7.06 -6.92 -6.77 0.02 0.94 2.28 2.76
CP -2.42 -1.85 -0.91 -0.05 0.08 0.78 2.13 2.70
LN 1.22 2.47 2.05 0.25 0.02 0.41 1.30 1.55

Panel B: Normal activity Panel E: Normal uncertainty

CS -0.19 0.01 0.32 0.48 -0.36 -0.21 0.03 0.24
FB -0.10 0.04 0.13 -0.01 -0.32 -0.21 0.01 0.07
PC -1.00 -1.20 -0.96 -0.72 -0.66 -0.72 -0.58 -0.49
CP -0.35 -0.78 -1.03 -1.02 -0.58 -0.80 -0.68 -0.69
LN 0.82 1.32 1.50 1.78 0.90 1.47 1.72 1.94

Panel C: High activity Panel F: High uncertainty

CS 0.51 0.57 1.43 1.82 -1.41 -0.57 -0.06 -0.18
FB 0.25 0.23 1.17 1.38 -0.82 -0.38 -0.55 -1.69
PC 1.75 2.44 2.84 2.56 -5.19 -5.62 -5.67 -5.60
CP 0.34 0.80 1.61 1.86 -0.74 -1.14 -1.98 -1.42
LN 0.59 1.34 1.99 1.88 1.16 2.30 1.71 0.29
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Figure 1: Bond excess returns
This figure plots times series of monthly bond excess returns (in percentage) for Treasury
bonds with maturities ranging from two to five years. Shaded areas represent NBER
recession dates. Monthly bond returns are in excess of the implied yield on a one-month
Treasury bill rate. Yield data are end-of-month and have been obtained from Gürkaynak
et al. (2007) over the period January 1962 to December 2018.
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Figure 2: Conditioning variables
This figure shows times series of the Purchasing managers’ index (PMI) published by the
Institute for Supply Management and the macroeconomic uncertainty (U) index from
Jurado et al. (2015). Green (yellow) shaded ares represent periods of (high) low activity
and uncertainty, respectively, where high (low) episodes are identified using the 80% (20%)
quantiles of their time series. The sample period covers January 1962 to December 2018.
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Figure 3: Empirical power curves
This figure shows the rejection frequency (empirical power) of the multivariate test for
equal predictive ability with a nominal size of 5% and data-generating process given by
(22) with the first element in µ deviating and the remaining elements are set to zero. The
first element of µ is set to cη̂ where η̂ is the average absolute loss differentials across all
models within the low and high economic activity states defined in the empirical section
and c ∈ [0, 2.5]. We use 10,000 Monte Carlo replications. We implement a conditional test
that sets ht = (1, h̃t)′, and use three samples sizes referred to as short (120 observations),
medium (348 observations) and long (1,000 observations). The left (right) panel depicts
results where εt+1 in (22) is sampled from the empirical loss differentials when forecasting
the 2-year (5-year) bond. The value of p indicates the dimension of the test arising from
the number of comparing models less one.

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

63



Figure 4: Relative forecasting performance
This figure plots the recursively updated cumulative difference in the squared prediction
errors from the EH benchmark model and the ith predictor model over the out-of-sample
evaluation period. We consider five different predictors: yield spreads (Campbell and
Shiller, 1991), forward spreads (Fama and Bliss, 1987), principal components of yields
(Litterman and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor,
and the Ludvigson and Ng (2009) macroeconomic factor. We also consider a simple equal-
weighted combination of the individual forecasts. A positive (negative) slope indicates that
the predictive model delivers more (less) accurate forecasts than the EH benchmark. Green
(yellow) shaded ares represent periods of high (low) activity and uncertainty, respectively,
where activity is measured using the Purchasing Managers’ Index (PMI) and uncertainty
in the index developed by Jurado et al. (2015). High (low) episodes are identified using the
80% (20%) quantiles of their time series. White areas are normal times. The out-of-sample
evaluation periods runs from January 2000 to December 2018.
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Figure 5: Full sample elimination order
This figure displays the full sample elimination order of predictive model in high, normal,
and low states separately for the Purchasing Managers’ Index (PMI) (left graphs) and the
macroeconomic uncertainty index (U) of Jurado et al. (2015) (right graphs) using the 20%
and 80% quantiles of their time series. White squares denote models included in the best
set of models and numbered tiles denotes eliminated models and their elimination order.
We consider five different predictors: yield spreads (Campbell and Shiller, 1991), forward
spreads (Fama and Bliss, 1987), principal components of yields (Litterman and Scheinkman,
1991), the Cochrane and Piazzesi (2005) forward rate factor, and the Ludvigson and Ng
(2009) macroeconomic factor. The out-of-sample evaluation periods runs from January
2000 to December 2018.
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Figure 6: Dynamic forecast combinations
This figure plots the recursively updated cumulative difference in the squared prediction
errors from the EH benchmark model and the dynamic forecast combination forecast for
each of the tree conditioning cases. We consider the Purchasing Managers’ Index (PMI)
and the macroeconomic uncertainty index (U) from Jurado et al. (2015) as our conditioning
variables along with an unconditional version labeled NONE. A positive (negative) slope
indicates that the dynamic forecast combination delivers more (less) accurate forecasts
than the EH benchmark. Green (yellow) shaded ares represent periods of high (low)
activity and uncertainty, respectively, where high (low) episodes are identified using the
80% (20%) quantiles of their time series. White areas are normal times. The out-of-sample
evaluation periods runs from January 2000 to December 2018.
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Figure 7: Dynamic versus static forecast combination
This figure plots the recursively updated cumulative difference in the squared prediction
errors from a static equal-weighted forecast combination benchmark and the dynamic
forecast combination forecast for each of the tree conditioning cases. We consider the
Purchasing Managers’ Index (PMI) and the macroeconomic uncertainty index (U) from
Jurado et al. (2015) as our conditioning variables along with an unconditional version
labeled NONE. A positive (negative) slope indicates that the dynamic forecast combination
delivers more (less) accurate forecasts than the static equal-weighted forecast combination
benchmark. Green (yellow) shaded ares represent periods of high (low) activity and
uncertainty, respectively, where high (low) episodes are identified using the 80% (20%)
quantiles of their time series. White areas are normal times. The out-of-sample evaluation
periods runs from January 2000 to December 2018.
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Figure 8: Inclusion plots across states
This figure displays the inclusion of each predictive model into the best set of models.
Green (yellow) shaded ares represent periods of high (low) states of the Purchasing
Managers’ Index (PMI) (left) and the Jurado et al. (2015) macroeconomic uncertainty
index (U) (right) identified using the 20% and 80% quantiles of the series. White areas are
normal times. We consider five different predictors: yield spreads (Campbell and Shiller,
1991), forward spreads (Fama and Bliss, 1987), principal components of yields (Litterman
and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward rate factor, and the
Ludvigson and Ng (2009) macroeconomic factor. EH denotes the benchmark expectations
hypothesis model. Inclusion of a predictive model is marked with +. The out-of-sample
evaluation periods runs from January 2000 to December 2018.
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Figure 9: Size of the set of best models
This figure illustrates the size of the set of best predictive models for each of the four bond
maturities and conditioning variables. Green (yellow) shaded ares represent periods of
high (low) activity and uncertainty, respectively, where activity is measured using the
Purchasing Manager’s Index (PMI) published by the Institute for Supply Management
and uncertainty is the macroeconomic uncertainty index (U) proposed in Jurado et al.
(2015). High (low) episodes are identified using the 80% (20%) quantiles of their time
series. White areas are normal times. The out-of-sample evaluation periods runs from
January 2000 to December 2018.
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Figure 10: Bond risk premia forecasts for dynamic combination strategy
This figure illustrates the time series behavior of bond risk premia forecasts originating
from our dynamic forecast combination strategy. PMI is the Purchasing Managers’ Index
published by the Institute for Supply Management and U is the macroeconomic uncertainty
index proposed in Jurado et al. (2015). The out-of-sample forecasting periods runs from
January 2000 to December 2018.
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Figure 11: Dynamic forecast combinations: CER gains
This figure plots the recursively updated cumulative difference in realized utility from
the dynamic forecast combination forecast for each of the tree conditioning cases and
the EH benchmark model. We consider the Purchasing Managers’ Index (PMI) and
the macroeconomic uncertainty index (U) from Jurado et al. (2015) as our conditioning
variables along with an unconditional version labeled NONE. A positive (negative) slope
indicates that the dynamic forecast combination delivers more (less) accurate forecasts
than the EH benchmark. Green (yellow) shaded ares represent periods of high (low)
activity and uncertainty, respectively, where high (low) episodes are identified using the
80% (20%) quantiles of their time series. White areas are normal times. The out-of-sample
evaluation periods runs from January 2000 to December 2018.
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Figure 12: Dynamic versus static forecast combination: CER gains
This figure plots the recursively updated cumulative difference in the squared prediction
errors from the dynamic forecast combination forecast for each of the tree conditioning
cases and a static equal-weighted forecast combination benchmark. We consider the
Purchasing Managers’ Index (PMI) and the macroeconomic uncertainty index (U) from
Jurado et al. (2015) as our conditioning variables along with an unconditional version
labeled NONE. A positive (negative) slope indicates that the dynamic forecast combination
delivers more (less) accurate forecasts than the static equal-weighted forecast combination
benchmark. Green (yellow) shaded ares represent periods of high (low) activity and
uncertainty, respectively, where high (low) episodes are identified using the 80% (20%)
quantiles of their time series. White areas are normal times. The out-of-sample evaluation
periods runs from January 2000 to December 2018.
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IA.A. Theoretical results, assumptions, and proofs

This section explains the Giacomini and White (2006) assumptions used in Theorem 1

along with its proof. The outline of several of the proofs follow Giacomini and White

(2006), making the necessary adjustments to account for the multivariate nature of our

tests. We also provide theoretical results with associated proofs for the case of multi-step

ahead forecasting, τ > 1, and the unconditional case, Gt = {∅,Ω}.

IA.A.1. One-step ahead forecasting and Giacomini and White (2006) assumptions

In the one-step ahead case, τ = 1, we impose the following assumptions that are adopted

from Giacomini and White (2006).

Assumption 1. {ht} and {wt} are φ-mixing with φ(t) = O
(
t−r/(2r−1)−ι

)
, r ≥ 1, or

α-mixing with α(t) = O
(
t−

r
r−1−ι

)
, r > 1, for some ι > 0.

Assumption 1 imposes relatively mild restrictions on the dependence structure and het-

erogeneity of data. We do not impose the stricter and common (covariance) stationarity

assumption as used in for instance Diebold and Mariano (1995) and Mariano and Preve

(2012). Specifically, data may exhibit arbitrary structural changes, which is a common

feature found in many empirical studies within e.g. macroeconomic prediction (see e.g.

Stock and Watson (2003) and Schrimpf and Wang (2010)), stock return prediction (see

e.g. Fama and French (1997) and Paye and Timmermann (2006)), and exchange rate

prediction (see e.g. Giacomini and Rossi (2010)) to name a few.

Assumption 2. E[|dt+1,i|2(r+δ)] <∞ for some δ > 0, i = 1, . . . , qp, and for all t, where

subscript i indicate the i’th element of dt+1.

Assumption 3. ΣT ≡ T−1∑T
t=1 E[dt+1d

′
t+1] is uniformly positive definite.

Assumptions 2-3 are mainly technical assumptions ensuring (uniformly) bounded moments

of data and positive definiteness of the asymptotic variance. Both of these assumptions

are common in the forecast evaluation literature.
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IA.A.1.1. Proof of Theorem 1 The proof of part A. and B. adopts the necessary steps

in Giacomini and White (2006). We start by proving part A. Let dt+1 = ht ⊗∆L+1 and

write

dt+1d
′
t+1 = g(ht,wt+1, . . . ,wt−m) (IA.A.1)

for some measurable function g. Since m < ∞, and {ht} and {wt} are mixing of the

same size according to Assumption 1, it follows from Theorem 3.49 in White (2001) that

{dt+1d
′
t+1} is mixing of the same size as {ht} and {wt}.

By Assumption 2 there exists a C̄ ∈ R+ and δ > 0 such that E[|dm,t+1,i|2(r+δ)] < C̄ <∞

for i = 1, . . . , qp and for all t, where subscript i indicates the i’th element in dt+1. Hence,

by the Cauchy-Schwartz inequality, one obtains

E[|dt+1,idt+1,j|r+δ] ≤ E[|d2
t+1,i|r+δ]1/2E[|d2

t+1,j|r+δ]1/2 < C̄ (IA.A.2)

for i, j = 1, . . . , qp and for all t. By Corollary 3.48 in White (2001), it then follows

that Σ̂T − ΣT
P−→ 0. Furthermore, by Assumption 2 it follows that ΣT is finite and by

Assumption 3 it is uniformly positive definite.

Next, let λ ∈ Rqp with λ′λ = 1 and consider

λ′Σ−1/2
T

√
T d̄t+1 = T−1/2

T−1∑
t=1
λ′Σ−1/2

T dt+1. (IA.A.3)

Let λ̃i denote the i’th element of the product λ′Σ−1/2
T , such that λ′Σ−1/2

T dt+1 = ∑qp
i=1 λ̃idt+1,i.

Hence, under the null hypothesis

E[λ′Σ−1/2
T dt+1|Gt] = E

[ qp∑
i=1
λ̃idt+1,i|Gt

]
=

qp∑
i=1
λ̃iE[dt+1,i|Gt] = 0, (IA.A.4)

by measurability of λ̃i, such that the sequence {λ′Σ−1/2
T dt+1,Gt} is an MDS. The asymp-
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totic variance is

σ2
d = Var[λ′Σ−1/2

T

√
T d̄]

= λ′Σ−1/2
T Var[

√
T d̄]Σ−1/2

T λ

= λ′Σ−1/2
T ΣTΣ−1/2

T λ

= 1 (IA.A.5)

for sufficiently large T . Furthermore, since Σ̂T −ΣT
P−→ 0 it follows by the Continuous

Mapping Theorem that

1
T

T∑
t=1
λ′Σ−1/2

T d′t+1dt+1Σ−1/2
T λ− σ2

d

= λ′Σ−1/2
T Σ̂TΣ−1/2

T λ− λ′Σ−1/2
T ΣTΣ−1/2

T λ
P−→ 0. (IA.A.6)

Lastly, we need to check that λ′Σ−1/2
T dt+1 has absolute 2 + δ moment. By Minkowski’s

inequality and Assumption 2 we obtain

E[|λ′Σ−1/2
T dt+1|2+δ] = E

[∣∣∣∣ qp∑
i=1
λ̃idt+1,i

∣∣∣∣2+δ
]

≤
( qp∑
i=1
λ̃iE

[
|dt+1,i|2+δ

]1/(2+δ)
)2+δ

<∞. (IA.A.7)

Consequently, we can apply the CLT for MDS and deduce that λ′Σ−1/2
T

√
T d̄

d−→ N(0, 1).

By the Cramér-Wold device it then follows that

Σ−1/2
√
T d̄

d−→ N(0, Iqp). (IA.A.8)

Since Σ̂T −ΣT
P−→ 0, we deduce that

√
T (Σ̂−1/2

T d̄)′
√
TΣ−1/2

T d̄ = T d̄
′Σ̂
−1
T d̄ = Sh

d−→ χ2(qp), (IA.A.9)

as T →∞.
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We now prove part B. By the same arguments as in the proof for part B., it follows that the

sequence {dt+1} is mixing of the same size as {wt} and {ht}. Furthermore, Assumption 2

ensures that each element of dt+1 is bounded uniformly in t, such that

d̄− E[d̄] P−→ 0 (IA.A.10)

by Corollary 3.48 in White (2001). Under the alternative hypothesis there exists η > 0

such that E[d̄′m]E[d̄m] > 2η for T sufficiently large. It follows that

P[d̄′d̄ > η] ≥ P[d̄′d̄− E[d̄′]E[d̄] > −η]

≥ P[|d̄′md̄− E[d̄′]E[d̄]| < η]→ 1, (IA.A.11)

where the convergence to unity is due to (IA.A.10). By identical arguments as the proof

of part B., d′t+1dt+1 is mixing with the same size as {wt} and each element is uniformly

bounded in t. Corollary 3.48 in White (2001) can then be applied, and it follows that Σ̂T

is a consistent estimator of ΣT . By Assumption 3, ΣT is uniformly positive definite. Let

c ∈ R+. It then follows from Theorem 8.13 in White (1994) that

P[Sh > c]→ 1, as T →∞. (IA.A.12)

Lastly, we prove part C. Let L∗t+1 be an arbitrary permutation of the forecasting losses,

i.e. L∗t+1 = PLt+1, where P is a (p + 1) × (p + 1) permutation matrix and Lt+1 =

(L1
t+1, . . . , L

p+1
t+1 )′. Define the p× (p+ 1) matrix D by

D =



1 −1 0 . . . 0

0 1 −1 . . . ...
... . . . . . . . . . 0

0 . . . 0 1 −1
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such that ∆L∗t+1 = DL∗t+1 = DPLt+1. In total, the number of permutations of the

forecast losses at each point of time t is (p+1)!. Mariano and Preve (2012) show that there

always exists a nonsingular matrix B of dimension p × p such that B∆Lt+1 = ∆L∗t+1.

Consequently, define the qp × qp matrix A = (Iq ⊗B), where Iq is the q × q identity

matrix. By standard properties of the Kronecker product A is nonsingular, and we have

that

d∗t+1 = ht ⊗∆L∗t+1 = (Iqht)⊗ (B∆Lt+1) = (Iq ⊗B)(ht ⊗∆Lt+1) = Adt+1.

(IA.A.13)

Since the null hypothesis implies that the asymptotic variance can be estimated consistently

by the sample variance, it follows that

Σ̂
∗
T ≡

1
T

T∑
t=1
d∗t+1d

∗′
t+1 = 1

T

T∑
t=1
Adt+1d

′
t+1A

′ = AΣ̂TA
′.

Due to the nonsingularity of A and Σ̂T , it follows that

d̄
∗′
t+1(Σ̂∗T )−1d̄

∗
t+1 = d′t+1A

′(AΣ̂TA
′)−1Adt+1

= d′t+1Σ̂
−1
T dt+1,

which shows that the test is invariant to a permutation of the ordering of the forecast

losses.

IA.A.2. Unconditional and multi-step predictive ability tests

In both the unconditional, Gt = {∅,Ω}, and multistep conditional case the loss series are

no longer martingale difference sequences under the null hypothesis. Thus, the sequence

{ht ⊗ ∆Lt+τ} may be serially autocorrelated.27 In the conditional setting, the null

hypothesis imposes a particular structure on the serial correlation, namely that it can

be at most order τ − 1. However, in the unconditional case no such restriction exists.

Consequently, we can no longer rely on the sample variance under the null for estimating
27Note that that in the unconditional case ht = 1 for all t.
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the covariance matrix as was the case in the one-step conditional setting considered in the

previous section. Instead, we consider a HAC-type estimator (see e.g. Newey and West

(1987) and Andrews (1991)) with a bandwidth choice guided by the implications of the

null hypothesis. The estimator is given by

Σ̃T = 1
T

[ T∑
t=1
dt+τd

′
t+τ

+
bT∑
j=1

κ(j, bT )
T∑

t=1+j

(
dt+τd

′
t+τ−j + dt+τ−jd′t+τ

) ]
, (IA.A.14)

where {bT} is an integer-valued truncation point sequence satisfying bT →∞ as T →∞

and bT = o(T ) (Newey and West, 1987) in the unconditional case, and bT = τ − 1 in the

conditional case. Furthermore, κ(·, ·) is a real-valued kernel weight function satisfying

the condition that κ(j, bT ) → 1 as T → ∞ for each j = 1, . . . , bT (Andrews, 1991), and

κ(j, bT ) = 0 for j > bT . For a review of data driven bandwidth selection methods see Clark

and McCracken (2013).

Along the lines of the construction of the conditional test with τ = 1, we construct the

following Wald statistic which can be used in testing either unconditional or multi-step

conditional equal predictive ability. The test statistic is given by

Sh,τ = T d̄Σ̃−1
T d̄, (IA.A.15)

where d̄ = T−1∑T
t=1 dt+τ . Before turning the properties of the proposed test statistic, we

will need a slight modification of the assumptions from the previous section on one-step

ahead forecasting.

Assumption 1∗. {ht} and {wt} are φ−mixing with φ(t) = O
(
t−r/(2r−2)−ι

)
, r ≥ 2, or

α−mixing with α(t) = O
(
t−

r
r−2−ι

)
, r > 2, for some ι > 0.

Assumption 2∗. E[|dt+τ,i|r+δ] < ∞ for some δ > 0, i = 1, . . . , qp, and for all t, where

subscript i indicate the i’th element of dt+1.

Assumption 3∗. ΣT ≡ T−1∑T
t=1 E[dt+τd′t+τ ] + T−1∑bT

j=1
∑T
t=1+j

(
E[dt+τd′t+τ−j]

+ E[dt+τ−jd′t+τ ]
)
is uniformly positive definite, where bT = τ − 1 in the conditional case
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and bT = T − 1 in the unconditional case.

Analogue to Theorem 1 Sh,τ is asymptotically chi-squared distributed with qp degrees of

freedom under the null hypothesis, has power under the alternative hypothesis, and is

permutation invariant. We summarize these results in Theorem 2 below.

Theorem 2 (Multistep multivariate predictive ability tests). Suppose Assumptions

1*-3* hold.

A. Asymptotic distribution under the null. Suppose that either Gt = {∅,Ω} and

τ ≥ 1 or Ft ⊆ Gt and τ > 1. For any test function sequence {ht}, m <∞, and under H0

in (8),

Sh,τ
d−→ χ2(qp), as T →∞. (IA.A.16)

B. Consistency under the alternative. For any c ∈ R+ and under HA,h in (12),

P[Sh,τ > c]→ 1, as T →∞. (IA.A.17)

C. Permutation invariance. Let L∗t+τ be an arbitrary permutation of the forecast

losses, and define ∆L∗t+τ = DL∗t+τ , d̄
∗ = T−1∑T

t=1 d
∗
t+τ with d∗t+τ = ht ⊗∆L∗t+τ and Σ̃∗T

be the associated covariance estimator defined in equation (IA.A.14). Then,

S∗h,τ ≡ T d̄
∗′
m(Σ̃∗T )−1d̄

∗ = Sh,τ (IA.A.18)

for all T .

Consequently, a multivariate test for equal conditional multistep predictive ability or

(multistep) unconditional predictive ability can be conducted by rejecting the null hy-

pothesis whenever Sh,τ > z1−α,qp. The permutation invariance result in Theorem 2 for the

unconditional case is similar to Proposition 2 in Mariano and Preve (2012), but holds under

the milder Assumptions 1*-3*, and hence also applies in a setting with non-stationary

data, inclusion of nested models and explicit account of estimation uncertainty.
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IA.A.2.1. Proof of Theorem 2 We start by proving part A. We proceed by a similar

procedure as in the proof of Theorem 1, however with modifications due to the dependency

in dt+τ under the null hypothesis. First, by Assumptions 2* and 3*, ΣT is finite and

uniformly positive definite. Let λ ∈ Rqp with λ′λ = 1 and consider λ′Σ−1/2
T

√
T d̄ =

T−1/2∑T
t=1 λ

′Σ−1/2
T dt+τ . Furthermore, identical arguments as in Theorem 1 imply that

{λ′Σ−1/2
T dt+τ} being mixing of the same size as {ht} and {wt}. Moreover, the asymptotic

variance satisfies σ2
d = Var[λ′Σ−1/2

T

√
T d̄] = λ′Σ−1/2

T ΣTΣ−1/2
T λ = 1 for all T sufficiently

large. By Minkowski’s inequality and computations as in (IA.A.7), λ′Σ−1/2
T dt+τ has

absolute 2 + δ moment for some δ > 0. Then, by Corollary 3.1 in Wooldridge and White

(1988) we deduce that λ′Σ−1/2
T

√
T d̄

d−→ N(0, 1). Hence, by the Cramér-Wold device it

follows that Σ−1/2
T

√
T d̄

d−→ N(0, Iqp).

It remains to be shown that Σ̃T −ΣT
P−→ 0. Consider

Σ̃T −ΣT = 1
T

T∑
t=1

(
dt+τd

′
t+τ − E[dt+τd′t+τ ]

)

+ 1
T

bT∑
j=1

κ(j, bT )
T∑

t=1+j

(
dt+τd

′
t+τ−j − E[dt+τd′t+τ−j]

+ dt+τ−jd′t+τ − E[dt+τ−jd′t+τ ]
)
. (IA.A.19)

By Theorem 3.49 in White (2001), {dt+τd′t+τ−j} is mixing of the same size as {ht} and

{wt} for each j = 0, . . . , bT . Moreover, each of its elements are bounded uniformly in t

by Assumption 2*. Hence, since κ(j, bT ) → 1 as T → ∞ and κ(0, bT ) = 1 it follows via

Corollary 3.48 in White (2001) that

1
T
κ(j, τ)

T∑
t=1+j

(
dt+τd

′
t+τ−j − E[dm,t+τd′t+τ−j]

) P−→ 0,

for each j = 0, . . . , bT . Combined with equation IA.A.19, this implies that Σ̃T −ΣT
P−→ 0

(see also Andrews (1991)). Hence, we can deduce via similar steps as in (IA.A.9) that

Sh,τ
d−→ χ2(qp) as T →∞.

We now prove part B. The result follows by arguments similar to those in the proof of
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Theorem 1. Hence, {dt+τ} is mixing with the same size as {ht} and {wt} and each element

in dt+τ is bounded uniformly in t by Assumption 2*. Then it follows by Corollary 3.48 in

White (2001) that d̄− E[d̄] P−→ 0, and consequently similar computations as in (IA.A.11)

applies. By arguments identical to those in the proof of part A., Σ̃T −ΣT
P−→ 0, where ΣT

is positive definite by Assumption 3*. Theorem 8.13 in White (1994) then implies that

under HA,h in (12) and for any constant c ∈ R+, P[Sh,τ > c]→ 1 as T →∞.

Lastly, we prove part C. Due the arguments in the proof of Theorem 1 it suffices to show

that Σ̃T∗ = AΣ̃TA
′, where A = Iq ⊗B. Thus, let

Σ̃T (b) ≡ 1
T

T∑
t=1+b

dt+τd
′
t+τ−b,

for b = 0, 1, 2 . . .. It then follows that

Σ̃T (b)∗ ≡ 1
T

T∑
t=1+b

d∗t+τd
∗′
t+τ−b = 1

T

T∑
t=1+b

Adt+τd
′
t+τ−bA

′ = AΣ̃T (b)A′.

Consequently, it follows that Σ̃∗T = AΣ̃TA
′, which completes the proof.
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IA.B. Bond data

We use the Gürkaynak et al. (2007) dataset from 1962:M1 to 2018:M12. The time t log

yield on a k-period bond is computed using the methods developed in Nelson and Siegel

(1987) and Svensson (1994) as

y
(k)
t = β0,t + β1,t

1− exp
(
− n
κ1,t

)
n
κ1,t

+ β2,t

1− exp
(
− n
κ1,t

)
n
κ1,t

− exp
(
− n

κ1,t

)
+ β3,t

1− exp
(
− n
κ2,t

)
n
κ2,t

− exp
(
− n

κ2,t

) , (IA.B.20)

where we use parentheses in the superscript to distinguish maturity from exponentiation

and n = k
m

and m denotes, respectively, the bond maturity in years and the number of

periods per year.

Let p(k)
t = −

(
k
m

)
y

(k)
t be the log price of a k-period bond at time t. The log forward

rate at time t for loans between t+ k − 1 and t+ k is defined as

f
(k)
t = p

(k−1)
t − p(k)

t = −k−1
m
y

(k−1)
t + k

m
y

(k)
t . (IA.B.21)

The excess return to purchasing a k-period bond today and selling it as a k − 1 period

bond after one month is

rx
(k)
t+1 = p

(k−1)
t+1 − p(k)

t − p
(1)
t = −k−1

m
y

(k−1)
t+1 + k

m
y

(k)
t − 1

m
y

(1)
t , (IA.B.22)

where y(1)
t denotes the risk-free one-period rate that we proxy using the implied yield on a

one-month Treasury bill obtained from the Center for Research in Security Prices (CRSP)

as in Gargano et al. (2019).28

28For k = 1, we have that f
(1)
t = y

(1)
t and that y

(k−1)
t = y

(0)
t = 0 due to p

(0)
t being zero (log of terminal

payoff of one is zero).

xi



IA.C. Additional empirical results

IA.C.1. Descriptive statistics for state variables

Table IA.1 presents full sample descriptive statistics for our two state variables that

captures economic activity and uncertainty, respectively: the Purchasing Managers’ Index

(PMI) and the macroeconomic uncertainty index of Jurado et al. (2015).

[Insert Table IA.1 About Here]

The series are both highly persistent with autocorrelation coefficients well above 0.9.

Most importantly, we note that the series obtains a negative contemporaneous correlation

of −0.48 in the data, suggesting that they capture part of the some features, but are not

perfect substitutes.

IA.C.2. In-sample predictive regressions

Table IA.2 presents full sample least squares estimation results to facilitate comparison

with the extant literature. Specifically, we estimate predictive regressions of the form

presented in (1) with the risk premium on a Treasury bond with k-periods to maturity

rx
(k)
t+1 as the dependent variable. We focus on bonds with k = {24, 36, 48, 60} months to

maturity and consider models based on the predictor variables outlined in Section 2.2. We

stress that these results are not available to a real-time investor, but they are useful for

gauging the mechanisms of the predictive models.

[Insert Table IA.2 About Here]

The slope coefficients for CS and FB are all positive and increasing with maturity and

are all statistically significant at conventional levels.29 We note that these positive slope

coefficients imply negative slopes for the companion regression of yield or forward spreads

on future yield changes as documented in Campbell and Shiller (1991). Thus, both yield
29Bauer and Hamilton (2018) show that statistical test of predictive regression in full sample analyses

are subject to serious small sample distortions when using 12-month overlapping returns. However, we
use one-month non-overlapping returns here and are therefore not affected by their results. See also the
discussion in Gargano et al. (2019).
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and forward spreads contain useful information about future bond excess returns over

the full range of available observations. Turning to the principal components, we find

that PC1 has a constant slope coefficient across maturities, PC2 increased monotonically,

and PC3 displays an inverse U-shape. P1 and PC3 are mostly insignificant, whereas PC2

is significant for the longer maturities. This mirrors the results for CS, but shows that

maturity-specific spreads are more informative than the common slope factor. Last, CP

and LN both display monotonically increasing slope coefficients that are highly significant.

Of all the models, LN appears to explain the largest fraction of bond risk premia, closely

followed by CP and yield spreads. Overall, in-sample results points to predictive relation

between all our candidate predictors.

IA.C.3. Links to uncertainty

Table IA.4 presents contemporaneous correlations among U and the risk premia estimates

from the set of individual models, EW, and the dynamic forecast combinations generated

by PMI, U, and NONE.

[Insert Table IA.4 About Here]

We find that most forecasts are positively correlated with uncertainty, implying that

investors higher risk premia in periods with heightened uncertainty. The exception is CS

and FB for the shorter maturities, where we observe negative correlations. As for our

main results concerning the relation to economic activity (see Table 8), we find that LN

displays the highest correlation with U among the individual predictors and EW. Turning

to the dynamic forecast combination estimates in Panel B, we find that both PMI and U

trimming delivers forecasts that are tightly linked to uncertainty. That is, not only do

they produce countercyclical risk premia estimates, they only procedure forecasts closely

linked to uncertainty.

IA.C.4. Additional results for economic value

Figure IA.1 plots the cumulative CER gains for the individual predictor variables along

with the equal-weighted forecast (EW). The results largely mirrors those in Table 9 in the
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main paper and illustrate that most individual predictors fail to deliver economic value on

a consistent basis. The exception being LN.

[Insert Figure IA.1 About Here]

[Insert Table IA.5 About Here]

Table IA.5 reconstructs the results from Table 9 in the main paper using instead a

coefficient of relative risk aversion of γ = 5 to verify that our results are robust to other,

and lower, values of risk aversion. The table clearly demonstrates that this is the case.
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Table IA.1: Conditioning variables
This table presents descriptive statistics for the state variables used in the empirical analysis.
PMI is the Purchasing Managers’ Index published by the Institute for Supply Managers
and U is the macroeconomic uncertainty index developed in Jurado et al. (2015). The
table reports mean, standard deviation, skewness, kurtosis, and first-order autocorrelation
(AC(1)) of each state variable. We also report the contemporaneous correlation between
the variables. The sample period is January 1962 to December 2018.

PMI U

Mean 52.61 0.66
Std. dev. 6.37 0.09
Skewness -0.61 1.63
Kurtosis 4.37 5.79
AR(1) 0.94 0.99
Correlation -0.48

xv



Table IA.2: In-sample regressions
This table reports full sample least squares estimates of the slope coefficients for various
linear predictive models for bond excess return. We consider five different predictors: yield
spreads (Campbell and Shiller, 1991), forward spreads (Fama and Bliss, 1987), principal
components of yields (Litterman and Scheinkman, 1991), the Cochrane and Piazzesi (2005)
forward rate factor computed from a projection of average excess bond returns on two-,
three-, four-, and five-year forward rates, and the Ludvigson and Ng (2009) macroeconomic
factor computed as a projection of average excess bond returns on factors obtained from
a large panel of macroeconomic variables. For each model, we report slope coefficients,
Newey and West (1987) t-statistics using a bandwidth of twelve lags in parenthesis, and
the adjusted R2 in square brackets. The sample period is January 1962 to December 2018.

2-year 3-year 4-year 5-year

Panel A: Campbell-Shiller

CS 2.02 2.36 2.75 3.15
(2.67) (2.64) (2.85) (3.17)
[2.55] [2.32] [2.42] [2.61]

Panel B: Fama-Bliss

FB 1.20 1.41 1.69 1.99
(2.20) (2.30) (2.79) (3.38)
[1.80] [1.68] [1.90] [2.14]

Panel C: Principal components

PC1 0.01 0.01 0.01 0.01
(1.43) (1.04) (0.76) (0.56)

PC2 0.13 0.21 0.29 0.37
(1.72) (2.10) (2.46) (2.77)

PC3 0.23 0.31 0.24 0.09
(0.66) (0.63) (0.39) (0.13)
[1.05] [1.09] [1.19] [1.30]

Panel D: Cochrane-Piazzesi

CP 0.65 0.88 1.11 1.36
(4.60) (4.30) (4.12) (4.08)
[2.37] [2.16] [2.17] [2.30]

Panel E: Ludvigson-Ng

LN 0.65 0.90 1.12 1.33
(3.68) (3.96) (4.25) (4.46)
[6.62] [6.47] [6.33] [6.15]
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Table IA.3: Correlations between forecasts and macroeconomic uncertainty
This table reports correlation coefficients between out-of-sample generated forecasts from
individual bond predictors (Panel A) and the dynamic forecast strategy (Panel B) and
economic uncertainty as measured by the the macroeconomic uncertainty index (U) from
Jurado et al. (2015). We report p-values for the null of no correlation in parenthesis. The
out-of-sample evaluation period runs from January 2000 to December 2018.

2-year bond 3-year bond 4-year bond 5-year bond

Panel A: Individual bond predictors

CS -0.09 -0.04 0.01 0.05
(0.10) (0.41) (0.92) (0.39)

FB -0.04 0.07 0.12 0.15
(0.49) (0.21) (0.02) (0.00)

PC 0.03 0.04 0.05 0.06
(0.57) (0.5) (0.34) (0.23)

CP 0.12 0.11 0.10 0.10
(0.02) (0.04) (0.06) (0.07)

LN 0.44 0.46 0.47 0.48
(0.00) (0.00) (0.00) (0.00)

EH 0.43 0.38 0.34 0.32
(0.00) (0.00) (0.00) (0.00)

EW 0.31 0.34 0.35 0.35
(0.00) (0.00) (0.00) (0.00)

Panel B: Dynamic forecast combination

PMI 0.54 0.53 0.50 0.50
(0.00) (0.00) (0.00) (0.00)

U 0.59 0.56 0.54 0.55
(0.00) (0.00) (0.00) (0.00)

NONE 0.54 0.47 0.46 0.47
(0.00) (0.00) (0.00) (0.00)
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Table IA.4: Alternative proxies for economic activity
This table reports correlation coefficients between forecasts and alternative proxies for
economic activity. We use the Chicago Fed National Activity Index (Panel A), recession
probabilities from Chauvet and Piger (2008) (Panel B), and log growth rates to industrial
production (Panel C). We report p-values for the null of no correlation in parenthesis. The
out-of-sample evaluation period runs from January 2000 to December 2018.

2-year bond 3-year bond 4-year bond 5-year bond

Panel A: Chicago Fed National Activity Index (CFNAI)

CS 0.10 0.04 -0.01 -0.05
(0.07) (0.40) (0.89) (0.35)

FB 0.04 -0.06 -0.13 -0.16
(0.46) (0.25) (0.02) (0.00)

PC 0.19 0.18 0.15 0.12
(0.00) (0.00) (0.01) (0.03)

CP -0.10 -0.09 -0.08 -0.07
(0.05) (0.10) (0.15) (0.17)

LN -0.48 -0.49 -0.50 -0.51
(0.00) (0.00) (0.00) (0.00)

EH -0.20 -0.17 -0.16 -0.15
(0.00) (0.00) (0.00) (0.01)

EW -0.26 -0.29 -0.30 -0.32
(0.00) (0.00) (0.00) (0.00)

PMI -0.51 -0.55 -0.54 -0.51
(0.00) (0.00) (0.00) (0.00)

U -0.56 -0.54 -0.54 -0.57
(0.00) (0.00) (0.00) (0.00)

NONE -0.53 -0.49 -0.49 -0.50
(0.00) (0.00) (0.00) (0.00)

Panel B: Recession probabilities (Chauvet and Piger, 2008)

CS -0.01 0.02 0.05 0.08
(0.89) (0.72) (0.33) (0.13)

FB 0.03 0.09 0.14 0.16
(0.64) (0.09) (0.01) (0.00)

PC -0.05 -0.05 -0.03 -0.01
(0.37) (0.35) (0.57) (0.86)

CP 0.10 0.08 0.06 0.05
(0.08) (0.16) (0.26) (0.32)

LN 0.56 0.57 0.58 0.59
(0.00) (0.00) (0.00) (0.00)

EH 0.18 0.13 0.11 0.09
(0.00) (0.01) (0.05) (0.09)

EW 0.37 0.38 0.38 0.38
(0.00) (0.00) (0.00) (0.00)

PMI 0.51 0.54 0.53 0.53
(0.00) (0.00) (0.00) (0.00)

U 0.55 0.56 0.54 0.55
(0.00) (0.00) (0.00) (0.00)

NONE 0.58 0.53 0.51 0.52
(0.00) (0.00) (0.00) (0.00)

Panel C: Log industrial production growth

CS 0.07 0.06 0.03 0.01
(0.16) (0.28) (0.55) (0.86)

FB 0.07 0.01 -0.03 -0.05
(0.16) (0.79) (0.61) (0.33)

PC 0.16 0.15 0.14 0.13
(0.00) (0.00) (0.01) (0.02)

CP -0.08 -0.07 -0.07 -0.07
(0.16) (0.17) (0.18) (0.18)

LN -0.26 -0.27 -0.28 -0.28
(0.00) (0.00) (0.00) (0.00)

EH -0.09 -0.10 -0.10 -0.10
(0.11) (0.08) (0.07) (0.06)

EW -0.12 -0.14 -0.15 -0.16
(0.03) (0.01) (0.01) (0.00)

PMI -0.23 -0.25 -0.27 -0.23
(0.00) (0.00) (0.00) (0.00)

U -0.28 -0.25 -0.25 -0.27
(0.00) (0.00) (0.00) (0.00)

NONE -0.25 -0.22 -0.21 -0.21
(0.00) (0.00) (0.01) (0.01)



Table IA.5: Economic Value: γ = 5
This table reports certainty equivalent return (CER) gains for various linear predictive
models for bond excess return. We consider five different predictors: yield spreads
(Campbell and Shiller, 1991), forward spreads (Fama and Bliss, 1987), principal components
of yields (Litterman and Scheinkman, 1991), the Cochrane and Piazzesi (2005) forward
rate factor, and the Ludvigson and Ng (2009) macroeconomic factor. For each model, we
report the CER gains relative to the expectations hypothesis (Panels A and B) and a static
forecast combination strategy (Panel C). PMI denotes the Purchasing Managers Index
published by the Institute for Supply Management and U is the macroeconomic uncertainty
index from Jurado et al. (2015). CER gains are based on an investor with mean-variance
preferences and a relative risk aversion of γ = 5. The out-of-sample evaluation period runs
from January 2000 to December 2018.

2-year 3-year 4-year 5-year

Panel A: Individual bond predictors against EH

CS -0.91 -0.88 -0.52 -0.25
(0.94) (0.87) (0.74) (0.62)

FB -0.62 -0.68 -0.55 -0.34
(0.88) (0.86) (0.80) (0.67)

PC -2.06 -2.46 -2.41 -2.36
(0.99) (0.96) (0.93) (0.9)

CP -0.80 -1.20 -1.31 -1.36
(0.96) (0.94) (0.91) (0.87)

LN 0.61 1.39 2.41 3.24
(0.01) (0.01) (0.00) (0.00)

EW 0.03 0.25 0.70 1.08
(0.46) (0.32) (0.13) (0.07)

Panel B: Dynamic forecast combination against EH

PMI 0.28 0.59 1.07 1.47
(0.19) (0.14) (0.05) (0.02)

U 0.19 0.53 1.22 1.60
(0.27) (0.14) (0.02) (0.01)

NONE 0.12 0.30 0.76 1.07
(0.34) (0.28) (0.10) (0.07)

Panel C: Dynamic forecast combination against EW

PMI 0.25 0.34 0.37 0.39
(0.02) (0.04) (0.05) (0.03)

U 0.16 0.28 0.52 0.52
(0.08) (0.02) (0.00) (0.02)

NONE 0.09 0.04 0.06 -0.01
(0.15) (0.35) (0.28) (0.52)

xix



Figure IA.1: Relative certainty equivalent returns
This figure plots the recursively updated cumulative difference in realized utility from the
EH benchmark model and the ith predictor model over the out-of-sample evaluation period.
We consider five different predictors: yield spreads (Campbell and Shiller, 1991), forward
spreads (Fama and Bliss, 1987), principal components of yields (Litterman and Scheinkman,
1991), the Cochrane and Piazzesi (2005) forward rate factor, and the Ludvigson and Ng
(2009) macroeconomic factor. We also consider a simple equal-weighted combination of
the individual forecasts. A positive (negative) slope indicates that the predictive model
delivers more (less) accurate forecasts than the EH benchmark. Green (yellow) shaded
ares represent periods of high (low) activity and uncertainty, respectively, where activity
is measured using the Purchasing Managers’ Index (PMI) and uncertainty in the index
developed by Jurado et al. (2015). High (low) episodes are identified using the 80% (20%)
quantiles of their time series. White areas are normal times. The out-of-sample evaluation
periods runs from January 2000 to December 2018.
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